
Table of Contents
................. 1Developing for Drupal
................ 2Contributing to Drupal
................ 2Types of Contributions
................... 3Task list
.................. 3Bug reports
............. 3How to report bugs effectively
................ 10Feature suggestions
................... 10Patches
................. 10Diff and patch
................ 11Diff on Windows
............... 13Patch on Windows
............. 13Creating and submitting patches
.............. 14Rules of reviewing patches
................ 15The revision process
........... 16Criteria for evaluating proposed changes
............ 17Maintaining a project on drupal.org
.............. 17Downloads and packaging
................ 17Managing releases
................ 18Orphaned projects
............. 18Tips for contributing to the core
................... 19Mailing lists
................... 19Newsletter
................. 19Drupal-support
.................. 19Drupal-devel
.................. 19Drupal-docs
.................. 19Drupal-cvs
.................. 19Infrastructure
............... 20Mailing of project issues
................. 21Coding standards
............... 21Drupal Coding Standards
................... 21Indenting
................. 21Control Structures
.................. 22Function Calls
................ 22Function Declarations
................... 22Comments
................. 23Including Code
................. 23PHP Code Tags
............... 23Header Comment Blocks
................... 23Using CVS
.................. 24Example URLs
................ 24Naming Conventions
............... 24Functions and Methods
................... 24Constants
................. 24Global Variables

i

Drupal Handbook15 Jan 2006

.................... 24Filenames

............... 24Doxygen formatting conventions

.................... 27Comments

.................... 27Indenting

................... 27PHP Code tags

................ 27SQL naming conventions

.................... 28Functions

.................... 28Constants

.................. 28Control structures

................. 29Header comment blocks

...................... 30CVS

................... 30CVS concepts

.............. 31Using CVS with branches and tags

................... 32Windows

................. 33Available Branches

.............. 33Apply for contributions CVS access

................. 33CVS GUIs and clients

............... 33Cross-platform CVS clients

................. 33Eclipse CVS plug-in

............... 33CVS front ends for Windows

.................. 33TortoiseCVS

................... 34WinCVS

.................. 35CVS on Mac OS X

............... 35CVL: point and click CVS

.............. 35Setting up/step by step CVS

................ 37Basic CVS with CVL

................ 37Preparing a project

................ 38Committing a project

................. 39Drupal CVS repositories

.................. 39Main repository

................ 39Contributions repository

........... 40Promoting a project to be an official release

............. 40Adding a file to the CVS repository

.............. 41Tracking Drupal source with CVS

................... 41Example

............... 42Updating the vendor branch

................... 43Summary

................ 44Additional resources

............... 44Sandbox maintenance rules

................. 44Additional references

.................... 45Drupal’s APIs

................. 46Module developer’s guide

............... 46Introduction to Drupal modules

.............. 46Drupal’s menu building mechanism

.............. 49Drupal’s node building mechanism

............... 53How Drupal handles access

.............. 54Drupal’s page serving mechanism

ii

15 Jan 2006Drupal Handbook

................ 61Creating modules - a tutorial

.................. 61Getting started

........... 62Letting Drupal know about the new function

.............. 62Telling Drupal about your module

............ 63Telling Drupal who can use your module

.............. 64Announce we have block content

............... 65Generate content for a block

............ 68Installing, enabling and testing the module

........... 69Create a module configuration (settings) page

........... 70Adding menu links and creating page content

........... 72Adding a ’more’ link and showing all entries

................... 73Conclusion

................. 73Updating your modules

............... 73Converting 3.0 modules to 4.0

............... 74Converting 4.0 modules to 4.1

................. 74Required changes

................. 75Optional changes

............... 75Converting 4.1 modules to 4.2

............... 76Converting 4.2 modules to 4.3

............. 77Creating modules for version 4.3.1

................. 78Getting Started

............ 78Telling Drupal about your module

........... 79Telling Drupal who can use your module

............. 80Announce we have block content

.............. 81Generate content for a block

.......... 84Installing, enabling and testing the module

.......... 85Create a module configuration (settings) page

.......... 87Adding menu links and creating page content

.......... 89Letting Drupal know about the new function

.......... 89Adding a more link and showing all entries

.................. 90Conclusion

.............. 90How to build up a _help hook

.............. 91How to convert a _system hook

............. 93How to convert an _auth_help hook

............... 94Converting 4.3 modules to 4.4

.................. 94Menu system

.................. 95Theme system

.................. 96Node system

.................. 96Filter system

.................. 98Hook changes

.................. 99Emitting links

............... 99Status and error messages

............... 99Converting 4.4 modules to 4.5

.................. 99Menu system

.................. 101Path changes

.................. 101Node changes

................. 102Filtering changes

iii

Drupal Handbook15 Jan 2006

................ 102Check_output() changes

................... 103Filter hook

................... 104Filter tips

.................. 104Other changes

............... 105Converting 4.5 modules to 4.6

.................. 105Block system

.................. 105Search system

.................. 105Module paths

................. 106Database backend

.................. 106Theme system

................. 106Watchdog messages

.................. 106Node markers

......... 106Control over destination page after form processing

................ 107Confirmation messages

................. 107Inter module calls

.................. 107Node queries

................... 108Text output

.............. 109Converting 4.6 modules to HEAD

................ 109Taxonomy API change

................. 109Table API change

................ 110Check Output change

.................... 110Join forces

.................... 111Reference

........... 111’Status’ field values for nodes and comments

............ 111Values of ’comment’ field in node table

.................. 111Module how-to’s

............... 111How to write a node module

............ 111How to write database independent code

............. 112How to write efficient database JOINs

......... 113How to connect to multiple databases within Drupal

.............. 114How to write themable modules

................. 115Theme developer’s guide

.................. 115Theming overview

................ 116Creating custom themes

................ 116PHPTemplate theme engine

................ 117Installing PHPTemplate

............... 117Creating a new PHPTemplate

................... 118Block.tpl.php

................. 118Available variables

................. 118Default template

................... 118Box.tpl.php

................. 118Available variables

................. 119Default template

.................. 119Comment.tpl.php

................. 119Available variables

................. 119Default template

................... 120Node.tpl.php

iv

15 Jan 2006Drupal Handbook

................. 120Available variables

................. 120Default template

............ 121Theme distinct node types differently

................... 121Page.tpl.php

................. 121Available variables

................. 122Default template

........... 124Alternative templates for different node types

............... 124Example - Theming flexinode

................. 124The Quick Version

................ 125Create template.php

............. 125Create flexinode_timestamp.tpl.php

................. 125The Long Version

.......... 1251. find the theme function for the flexinode field

......... 1262. Create template.php and add override function

........ 1273. Create flexinode_timestamp.tpl.php to do formatting

.................. 127Example Files

.................. 127template.php

.............. 128flexinode_timestamp.tpl.php

........ 128Making additional variables available to your templates

.............. 130Overriding other theme functions

...... 131Example - Overriding the user profile pages using PHPTemplate

................... 131Before

.................... 131After

............... 131Not including drupal.css

...... 131Protecting content from anonymous users when using overrides

........ 132Using PHPTemplate Overrides with protected content

................... 132Example

................... 132Solution

.............. 133Themeing front page and others

............ 134XTemplate to PHPTemplate conversion

................ 135XTemplate theme engine

............... 135Creating a new XTemplate

.................. 136Template basics

.................. 136Section Tags

................... 137Item Tags

.................. 137Header section

................... 137The Section

.................... 138Prolog

................... 138DOCTYPE

................... 138{head_title}

.................... 138{head}

.................... 139{styles}

................. 139{onload_attributes}

.................... 139{logo}

................... 139{site_name}

.................. 139{site_slogan}

............. 140{secondary_links} {primary_links}

v

Drupal Handbook15 Jan 2006

................... 140Search Box

................... 140{search_url}

................. 140{search_description}

................ 140{search_button_text}

.................... 140Mission

................... 140{mission}

.................... 141Title

.................... 141{title}

.................... 141Tabs

.................... 141{tabs}

.................. 141{breadcrumb}

.................... 141Help

.................... 141{help}

................... 141Message

................... 142{message}

................... 142Node section

................. 142The Node Section

.................... 142{sticky}

.................... 142Picture

................... 142{picture}

.................... 143Title

.................... 143{link}

.................... 143{title}

................... 143{submitted}

................... 143Taxonomy

................... 143{taxonomy}

................... 144{content}

.................... 144Links

.................... 144{links}

.................... 144Comment

................ 144The Comment Section

.................... 144Avatar

.................... 145{avatar}

.................... 145Title

.................... 145{link}

.................... 145{title}

................... 145Submitted

................... 145{submitted}

.................... 145New

.................... 146{new}

.................... 146Content

................... 146{content}

.................... 146Links

.................... 146{links}

.................... 146Blocks

................... 146The Section

.................... 146{blocks}

vi

15 Jan 2006Drupal Handbook

.................... 146Block

................... 147{module}

.................... 147{delta}

.................... 147{title}

................... 147{content}

.................... 147Footer

................. 147The Footer Section

................... 147Message

................. 147{footer_message}

.................... 148{footer}

................. 148Editing with Golive

.................... 148Set Up

.................... 148Editing

.................. 148Plain PHP themes

................ 150Theme coding conventions

................. 151Updating your themes

............... 151Converting 3.0 themes to 4.0

................. 151Required changes

............... 151Changes in class definition

.............. 152Changes in function header()

............... 152Changes in function node()

.............. 153Changes in function comment()

............... 153Changes in function footer()

................. 154Optional changes

................ 154New function: system()

............... 154Converting 4.0 themes to 4.1

................. 154Required changes

................. 154Optional changes

.................. 154theme_head

............... 154Converting 4.1 themes to 4.2

................. 154Required changes

......... 154Add a theme_onload_attribute() to a <body> tag:

................. 154Optional changes

............. 155Take advantage of settings() hook

............. 155Direct you site logo to index.php

............... 156Converting 4.2 themes to 4.3

............... 156Converting 4.3 themes to 4.4

............... 158Converting 4.4 themes to 4.5

................. 158Directory structure

................ 159Tabs (a.k.a. Local Tasks)

.................. 160Status Messages

.................. 160Static vs. Sticky

................ 160Avatar vs. User Picture

................. 161Theme Screenshots

............. 162Centralized Theme Configuration

.................... 163Styles

................... 164_help hook

vii

Drupal Handbook15 Jan 2006

............... 164Converting 4.5 themes to 4.6

................... 164Search form

................... 164Node links

.................... 164Pages

.............. 164Node and comment markers

.............. 165Pager and menu item themeing

................ 165Text validation changes

.............. 165Converting 4.6 themes to HEAD

................. 165Table row coloring

............... 165Theme screenshot guidelines

................... 167Theme how-to’s

........ 167Tips for designing themes in Dreamweaver, GoLive etc.

.................. 167Dreamweaver

................. 167In Extensions.txt

.............. 168In MMDocumentTypes.xml

.............. 168Adding your theme to Drupal.org

................ 168Theme snippets repository

................... 168Custom login

...... 169Customize display of submission information based on node type

............ 169get an contextual array for your node-links

............ 170How to display mission on every page?

................. 170Make images square

............ 171Overriding drupal.css; two approaches

................ 172Drupal.org site maintainers

.................. 174Site maintainer’s guide

.............. 174Unpublishing vs deleting of content

................ 174Blocking vs deleting of users

................. 174Suggested Workflow

................. 175Badly formatted posts

................... 176Translator’s guide

................. 176Translation templates

............... 177Programs to use for translation

................. 177Issues using poEdit

................. 177Plurals Solution #1

................. 178Plurals Solution #2

................. 178Plurals Solution #3

........... 181Setting up XEmacs with po-mode on Windows

............... 182Translated Drupal information

.................... 182African

......... 182Vir diegene wat betrokke wil raak by die vertaling:

........... 182Om ’n fout met die vertaling te rapporteer:

........ 182Vir enige ander verwante redes waaroor jy wil kontak:

.................... 182Russian

.................... 183Spanish

................. 183Translation guidelines

.............. 183Translation of contributed modules

.............. 183Distributing the translation effort

viii

15 Jan 2006Drupal Handbook

................. 184Status of the translations

.................. 184Status overview

.............. 185Checking your translation status

.......... 185Make a single file from the loose .po files from CVS

................ 186Recycling old translations

................... 186Troubleshooting

............. 186Weird characters or question marks

................... 188Drupal test suite

...................... 189FAQ

................... 189PHP Debugger

ix

Drupal Handbook15 Jan 2006

Developing for Drupal
The Drupal engine is open source. It is possible for each and every user to become a contributor.
The fact remains that most Drupal users, even those skilled in programming arts, have never
contributed to Drupal even though most of us had days where we thought to ourselves: "I wish
Drupal could do this or that ...". Through this section, we hope to make Drupal more accessible
to them.

The guide pages found here are collaborative, but not linked to particular Drupal versions.
Because of this, documentation can become out of date. To combat this, we are moving most
developer documentation into the Doxygen documentation that is versioned by CVS and
generated from the source code. Look there for up-to-date and version-specific information.

CVS log messages
Browse CVS repository

1

Drupal Handbook15 Jan 2006

http://drupal.org/book/view/326
http://www.drupal.org/cvs
http://cvs.drupal.org/

Contributing to Drupal
Drupal is a collaborative, community-driven project. This means that the software and its
supporting features (documentation, the drupal.org website) are collaboratively produced by
users and developers all over the world.

There are several ways to contribute to Drupal:

Improve or enhance the software
Provide support and documentation for other users (e.g., by posting additions or updates to
the Drupal Handbook or answering requests on user forums or issues).
Provide financial support to Drupal development.

This section focuses on the first of these three.

Types of Contributions
There are two basic types of contributions you can make to Drupal’s code base: (a) "contributed"
modules or themes and (b) contributions to the drupal "core".

"Contributions" are the community-produced modules and themes
available on the Drupal site. To make a contribution, you need to apply for contributor
privileges, produce your contribution, and then notify the contributions manager to request
a review of your work before posting. As long as contributions meet some minimal criteria
- they do what they claim to and have some demonstrable benefit without unduly
replicating already-available functionality - they are approved.

If you have major enhancements you wish to contribute, doing so via a contributed module
is in many ways the easiest way to begin. Contributed code has a relatively low set of
requirements to meet.

In contrast, changes to the Drupal core are made through a thorough consultative process to
ensure the overall integrity of the software.

Changes to the Drupal core are generally of three types:

Bug fixes. These changes respond to identified problems in
the existing code.
New features. These changes are enhancements on what is already available.
Code maintenance. These changes are to improve the quality of the code or bring it up to
date with changes elsewhere in Drupal. This can include bringing code in line with
coding standards, improving efficiency (e.g., eliminating unneeded database queries),
introducing or improving in-line comments, and doing upgrades for compliance with a
new release version.

2

15 Jan 2006Drupal Handbook

http://drupal.org/book/view/253
http://drupal.org/forum
http://drupal.org/project/issues
http://drupal.org/book/view/2227
http://drupal.org/cvs-account
http://drupal.org/cvs-account
http://drupal.org/book/view/317
http://drupal.org/book/view/502

While you can create your own issues, you can also begin by simply taking on existing tasks
on the task list.

Task list
The Drupal bug database contains many issues classified as "bite-sized" tasks -- tasks that are
well-defined and self-contained, and thus suitable for a volunteer looking to get involved with
the project. You don’t need broad or detailed knowledge of Drupal’s design to take on one of
these, just a pretty good idea of how things generally work, and familiarity with the coding
guidelines. Each task is something a volunteer could pick off in a spare evening or two.

If you start one of these, please notify the other developers by mailing drupal-devel@drupal.org
(of course, you should be subscribed to that list). If you have questions as you go, ask the dev list
or update the task (updates are sent to the list automatically). Send the patch to the list when
ready.

Bug reports
If you found a bug, send us the bug report and we will fix it provided you include enough
diagnostic information for us to go on. Your bug reports play an essential role in making Drupal
reliable.

Bug reports can be posted in connection with any project hosted on drupal.org. You can submit
a new bug via the submit issue form. Provide a sensible title for the bug, and choose the project
you think you have found the bug in. After previewing the submission, you will need to choose
a related component and you will be able to provide more details about the bug, including the
description of the problem itself. Please include any error messages you received and a detailed
description of what you were doing at the time.

Note that you don’t have to be logged in nor a member of drupal.org to submit bugs.

The first thing we will do when you report a bug is tell you to upgrade to the newest version of
Drupal, and then see if the problem reproduces. So you’ll probably save us both time if you
upgrade and test with the latest version before sending in a bug report.

How to report bugs effectively
Summary

The first aim of a bug report is to let the programmer see the failure with their own eyes. If
you can’t be with them to make it fail in front of them, give them detailed instructions so
that they can make it fail for themselves.
In case the first aim doesn’t succeed, and the programmer can’t see it failing themselves, the
second aim of a bug report is to describe what went wrong. Describe everything in detail.
State what you saw, and also state what you expected to see. Write down the error
messages, especially if they have numbers in.

3

Drupal Handbook15 Jan 2006

http://drupal.org/book/view/1333
http://drupal.org/project/issues
http://drupal.org/project/issues/task
http://drupal.org/node/view/318
http://drupal.org/node/view/318
http://lists.drupal.org/listinfo/drupal-devel
http://drupal.org/node/add/project_issue/

When your computer does something unexpected, freeze. Do nothing until you’re calm,
and don’t do anything that you think might be dangerous.
By all means try to diagnose the fault yourself if you think you can, but if you do, you
should still report the symptoms as well.
Be ready to provide extra information if the programmer needs it. If they didn’t need it,
they wouldn’t be asking for it. They aren’t being deliberately awkward. Have version numbers
at your fingertips, because they will probably be needed.
Write clearly. Say what you mean, and make sure it can’t be misinterpreted.
Above all, be precise. Programmers like precision.

Introduction
Anybody who has written software for public use will probably have received at least one bad
bug report. Reports that say nothing ("It doesn’t work!"); reports that make no sense; reports that
don’t give enough information; reports that give wrong information. Reports of problems that
turn out to be user error; reports of problems that turn out to be the fault of somebody else’s
program; reports of problems that turn out to be network failures.

There’s a reason why technical support is seen as a horrible job to be in, and that reason is bad
bug reports. However, not all bug reports are unpleasant: I maintain free software, when I’m not
earning my living, and sometimes I receive wonderfully clear, helpful, informative bug reports.

In this essay I’ll try to state clearly what makes a good bug report. Ideally I would like
everybody in the world to read this essay before reporting any bugs to anybody. Certainly I
would like everybody who reports bugs to me to have read it.

In a nutshell, the aim of a bug report is to enable the programmer to see the program failing in
front of them. You can either show them in person, or give them careful and detailed
instructions on how to make it fail. If they can make it fail, they will try to gather extra
information until they know the cause. If they can’t make it fail, they will have to ask you to
gather that information for them.

In bug reports, try to make very clear what are actual facts ("I was at the computer and this
happened") and what are speculations ("I think the problem might be this"). Leave out
speculations if you want to, but don’t leave out facts.

When you report a bug, you are doing so because you want the bug fixed. There is no point in
swearing at the programmer or being deliberately unhelpful: it may be their fault and your
problem, and you might be right to be angry with them, but the bug will get fixed faster if you
help them by supplying all the information they need. Remember also that if the program is free,
then the author is providing it out of kindness, so if too many people are rude to them then they
may stop feeling kind.

"It doesn’t work."
Give the programmer some credit for basic intelligence: if the program really didn’t work at all,
they would probably have noticed. Since they haven’t noticed, it must be working for them.
Therefore, either you are doing something differently from them, or your environment is
different from theirs. They need information; providing this information is the purpose of a bug

4

15 Jan 2006Drupal Handbook

report. More information is almost always better than less.

Many programs, particularly free ones, publish their list of known bugs. If you can find a list of
known bugs, it’s worth reading it to see if the bug you’ve just found is already known or not. If
it’s already known, it probably isn’t worth reporting again, but if you think you have more
information than the report in the bug list, you might want to contact the programmer anyway.
They might be able to fix the bug more easily if you can give them information they didn’t
already have.

This essay is full of guidelines. None of them is an absolute rule. Particular programmers have
particular ways they like bugs to be reported. If the program comes with its own set of
bug-reporting guidelines, read them. If the guidelines that come with the program contradict the
guidelines in this essay, follow the ones that come with the program!

If you are not reporting a bug but just asking for help using the program, you should state
where you have already looked for the answer to your question. ("I looked in chapter 4 and
section 5.2 but couldn’t find anything that told me if this is possible.") This will let the
programmer know where people will expect to find the answer, so they can make the
documentation easier to use.

"Show me"
One of the very best ways you can report a bug is by showing it to the programmer. Stand them
in front of your computer, fire up their software, and demonstrate the thing that goes wrong. Let
them watch you start the machine, watch you run the software, watch how you interact with the
software, and watch what the software does in response to your inputs.

They know that software like the back of their hand. They know which parts they trust, and they
know which parts are likely to have faults. They know intuitively what to watch for. By the time
the software does something obviously wrong, they may well have already noticed something
subtly wrong earlier which might give them a clue. They can observe everything the computer
does during the test run, and they can pick out the important bits for themselves.

This may not be enough. They may decide they need more information, and ask you to show
them the same thing again. They may ask you to talk them through the procedure, so that they
can reproduce the bug for themselves as many times as they want. They might try varying the
procedure a few times, to see whether the problem occurs in only one case or in a family of
related cases. If you’re unlucky, they may need to sit down for a couple of hours with a set of
development tools and really start investigating. But the most important thing is to have the
programmer looking at the computer when it goes wrong. Once they can see the problem
happening, they can usually take it from there and start trying to fix it.

"Show me how to show myself"
This is the era of the Internet. This is the era of worldwide communication. This is the era in
which I can send my software to somebody in Russia at the touch of a button, and he can send
me comments about it just as easily. But if he has a problem with my program, he can’t have me
standing in front of it while it fails. "Show me" is good when you can, but often you can’t.

5

Drupal Handbook15 Jan 2006

If you have to report a bug to a programmer who can’t be present in person, the aim of the
exercise is to enable them to reproduce the problem. You want the programmer to run their own
copy of the program, do the same things to it, and make it fail in the same way. When they can
see the problem happening in front of their eyes, then they can deal with it.

So tell them exactly what you did. If it’s a graphical program, tell them which buttons you
pressed and what order you pressed them in. If it’s a program you run by typing a command,
show them precisely what command you typed. Wherever possible, you should provide a
verbatim transcript of the session, showing what commands you typed and what the computer
output in response.

Give the programmer all the input you can think of. If the program reads from a file, you will
probably need to send a copy of the file. If the program talks to another computer over a
network, you probably can’t send a copy of that computer, but you can at least say what kind of
computer it is, and (if you can) what software is running on it.

"Works for me, so what goes wrong?"
If you give the programmer a long list of inputs and actions, and they fire up their own copy of
the program and nothing goes wrong, then you haven’t given them enough information.
Possibly the fault doesn’t show up on every computer; your system and theirs may differ in
some way. Possibly you have misunderstood what the program is supposed to do, and you are
both looking at exactly the same display but you think it’s wrong and they know it’s right.

So also describe what happened. Tell them exactly what you saw. Tell them why you think what
you saw is wrong; better still, tell them exactly what you expected to see. If you say "and then it
went wrong", you have left out some very important information.

If you saw error messages then tell the programmer, carefully and precisely, what they were.
They are important! At this stage, the programmer is not trying to fix the problem: they’re just
trying to find it. They need to know what has gone wrong, and those error messages are the
computer’s best effort to tell you that. Write the errors down if you have no other easy way to
remember them, but it’s not worth reporting that the program generated an error unless you can
also report what the error message was.

In particular, if the error message has numbers in it, do let the programmer have those numbers.
Just because you can’t see any meaning in them doesn’t mean there isn’t any. Numbers contain
all kinds of information that can be read by programmers, and they are likely to contain vital
clues. Numbers in error messages are there because the computer is too confused to report the
error in words, but is doing the best it can to get the important information to you somehow.

At this stage, the programmer is effectively doing detective work. They don’t know what’s
happened, and they can’t get close enough to watch it happening for themselves, so they are
searching for clues that might give it away. Error messages, incomprehensible strings of
numbers, and even unexplained delays are all just as important as fingerprints at the scene of a
crime. Keep them!

6

15 Jan 2006Drupal Handbook

If you are using Unix, the program may have produced a core dump. Core dumps are a
particularly good source of clues, so don’t throw them away. On the other hand, most
programmers don’t like to receive huge core files by e-mail without warning, so ask before
mailing one to anybody. Also, be aware that the core file contains a record of the complete state
of the program: any "secrets" involved (maybe the program was handling a personal message, or
dealing with confidential data) may be contained in the core file.

"So then, I tried..."
There are a lot of things you might do when an error or bug comes up. Many of them make the
problem worse. A friend of mine at school deleted all her Word documents by mistake, and
before calling in any expert help, she tried reinstalling Word, and then she tried running Defrag.
Neither of these helped recover her files, and between them they scrambled her disk to the
extent that no Undelete program in the world would have been able to recover anything. If she’d
only left it alone, she might have had a chance.

Users like this are like a mongoose backed into a corner: with its back to the wall and seeing
certain death staring it in the face, it attacks frantically, because doing something has to be better
than doing nothing. This is not well adapted to the type of problems computers produce.

Instead of being a mongoose, be an antelope. When an antelope is confronted with something
unexpected or frightening, it freezes. It stays absolutely still and tries not to attract any attention,
while it stops and thinks and works out the best thing to do. (If antelopes had a technical
support line, it would be telephoning it at this point.) Then, once it has decided what the safest
thing to do is, it does it.

When something goes wrong, immediately stop doing anything. Don’t touch any buttons at all.
Look at the screen and notice everything out of the ordinary, and remember it or write it down.
Then perhaps start cautiously pressing "OK" or "Cancel", whichever seems safest. Try to develop
a reflex reaction - if a computer does anything unexpected, freeze.

If you manage to get out of the problem, whether by closing down the affected program or by
rebooting the computer, a good thing to do is to try to make it happen again. Programmers like
problems that they can reproduce more than once. Happy programmers fix bugs faster and
more efficiently.

"I think the tachyon modulation must be wrongly polarised."
It isn’t only non-programmers who produce bad bug reports. Some of the worst bug reports I’ve
ever seen come from programmers, and even from good programmers.

I worked with another programmer once, who kept finding bugs in his own code and trying to
fix them. Every so often he’d hit a bug he couldn’t solve, and he’d call me over to help. "What’s
gone wrong?" I’d ask. He would reply by telling me his current opinion of what needed to be
fixed.

This worked fine when his current opinion was right. It meant he’d already done half the work
and we were able to finish the job together. It was efficient and useful.

7

Drupal Handbook15 Jan 2006

But quite often he was wrong. We would work for some time trying to figure out why some
particular part of the program was producing incorrect data, and eventually we would discover
that it wasn’t, that we’d been investigating a perfectly good piece of code for half an hour, and
that the actual problem was somewhere else.

I’m sure he wouldn’t do that to a doctor. "Doctor, I need a prescription for Hydroyoyodyne."
People know not to say that to a doctor: you describe the symptoms, the actual discomforts and
aches and pains and rashes and fevers, and you let the doctor do the diagnosis of what the
problem is and what to do about it. Otherwise the doctor dismisses you as a hypochondriac or
crackpot, and quite rightly so.

It’s the same with programmers. Providing your own diagnosis might be helpful sometimes, but
always state the symptoms. The diagnosis is an optional extra, and not an alternative to giving
the symptoms. Equally, sending a modification to the code to fix the problem is a useful addition
to a bug report but not an adequate substitute for one.

If a programmer asks you for extra information, don’t make it up! Somebody reported a bug to
me once, and I asked him to try a command that I knew wouldn’t work. The reason I asked him
to try it was that I wanted to know which of two different error messages it would give.
Knowing which error message came back would give a vital clue. But he didn’t actually try it -
he just mailed me back and said "No, that won’t work". It took me some time to persuade him to
try it for real.

Using your intelligence to help the programmer is fine. Even if your deductions are wrong, the
programmer should be grateful that you at least tried to make their life easier. But report the
symptoms as well, or you may well make their life much more difficult instead.

"That’s funny, it did it a moment ago."
Say "intermittent fault" to any programmer and watch their face fall. The easy problems are the
ones where performing a simple sequence of actions will cause the failure to occur. The
programmer can then repeat those actions under closely observed test conditions and watch
what happens in great detail. Too many problems simply don’t work that way: there will be
programs that fail once a week, or fail once in a blue moon, or never fail when you try them in
front of the programmer but always fail when you have a deadline coming up.

Most intermittent faults are not truly intermittent. Most of them have some logic somewhere.
Some might occur when the machine is running out of memory, some might occur when another
program tries to modify a critical file at the wrong moment, and some might occur only in the
first half of every hour! (I’ve actually seen one of these.)

Also, if you can reproduce the bug but the programmer can’t, it could very well be that their
computer and your computer are different in some way and this difference is causing the
problem. I had a program once whose window curled up into a little ball in the top left corner of
the screen, and sat there and sulked. But it only did it on 800x600 screens; it was fine on my
1024x768 monitor.

8

15 Jan 2006Drupal Handbook

The programmer will want to know anything you can find out about the problem. Try it on
another machine, perhaps. Try it twice or three times and see how often it fails. If it goes wrong
when you’re doing serious work but not when you’re trying to demonstrate it, it might be long
running times or large files that make it fall over. Try to remember as much detail as you can
about what you were doing to it when it did fall over, and if you see any patterns, mention
them. Anything you can provide has to be some help. Even if it’s only probabilistic (such as "it
tends to crash more often when Emacs is running"), it might not provide direct clues to the cause
of the problem, but it might help the programmer reproduce it.

Most importantly, the programmer will want to be sure of whether they’re dealing with a true
intermittent fault or a machine-specific fault. They will want to know lots of details about your
computer, so they can work out how it differs from theirs. A lot of these details will depend on
the particular program, but one thing you should definitely be ready to provide is version
numbers. The version number of the program itself, and the version number of the operating
system, and probably the version numbers of any other programs that are involved in the
problem.

"So I loaded the disk on to my Windows . . ."
Writing clearly is essential in a bug report. If the programmer can’t tell what you meant, you
might as well not have said anything.

I get bug reports from all around the world. Many of them are from non-native English
speakers, and a lot of those apologise for their poor English. In general, the bug reports with
apologies for their poor English are actually very clear and useful. All the most unclear reports
come from native English speakers who assume that I will understand them even if they don’t
make any effort to be clear or precise.

Be specific. If you can do the same thing two different ways, state which one you used. "I
selected Load" might mean "I clicked on Load" or "I pressed Alt-L". Say which you did.
Sometimes it matters.
Be verbose. Give more information rather than less. If you say too much, the programmer
can ignore some of it. If you say too little, they have to come back and ask more questions.
One bug report I received was a single sentence; every time I asked for more information,
the reporter would reply with another single sentence. It took me several weeks to get a
useful amount of information, because it turned up one short sentence at a time.
Be careful of pronouns. Don’t use words like "it", or references like "the window", when it’s
unclear what they mean. Consider this: "I started FooApp. It put up a warning window. I
tried to close it and it crashed." It isn’t clear what the user tried to close. Did they try to close
the warning window, or the whole of FooApp? It makes a difference. Instead, you could say
"I started FooApp, which put up a warning window. I tried to close the warning window,
and FooApp crashed." This is longer and more repetitive, but also clearer and less easy to
misunderstand.
Read what you wrote. Read the report back to yourself, and see if you think it’s clear. If you
have listed a sequence of actions which should produce the failure, try following them
yourself, to see if you missed a step.

9

Drupal Handbook15 Jan 2006

Feature suggestions
How many times you have dreamed "Gee...I wish Drupal could do that" or "I like the xxx
feature, but it should work better". If you want to improve Drupal, send us you wishes as a
feature suggestions. Your suggestions play an essential role in making Drupal more usable and
feature-rich.

The core features provided by Drupal are listed on the features page. You can submit a feature
request by creating a new issue connected to the component the feature is related to. Please note
that there is a Drupal contributed module named ’Features’ which is used on the feature page
mentioned above. Every module has a feature request subcategory, and thus the ’Feature’
module is not the appropriate place to submit feature requests. To properly file a feature
request, first choose the project it is related to and then after hitting preview set the other related
options. You will be able to categorize the issue as a feature request with the Issue Information /
Category dropdown.

Note that you don’t have to be logged in nor to be a member of drupal.org to suggest features.

Patches
Patches are a way to distribute relatively small changes to code. They are the preferred way to
contribute bug fixes and other proposed changes to Drupal’s codebase.

Diff and patch
Diff and patch are two complementary tools for recording and applying changes between two
sets of files.

We use them for content control even though we distribute our code via CVS. Why? Because diff
and patch provide an immense amount of control. Patches can be submitted via e-mail and in
plain text; maintainers can read and judge the patch before it ever gets near a tree. It allows
maintainers to look at changes easily without blindly integrating them.

Diff is the first command in the set. It has the simple purpose to create a file called a patch or a
diff which contains the differences between two text files or two groups of text files. Diff can
write into different formats, although the unified difference format is preferred. The patches this
command generates are much easier to distribute and allow maintainers to see quickly and
easily what changed and to make a judgement.

Patch is diff’s complement and takes a patch file generated by diff and applies it against a file or
a group of files.

The actual usage of diff and patch is not complicated.

10

15 Jan 2006Drupal Handbook

http://drupal.org/features
http://drupal.org/node/add/project_issue/

At its simplest, a diff command for comparing two files would be:

diff old.txt new.txt > oldnew.patch

For drupal, we prefer patches in unified format, so we add -u to the command line:

diff -u old.txt new.txt > oldnew.patch

It is helpful to keep a reference in the patch file to which function was patched, so the following
form of the command is often used. For example, if you have made a change in foo.module, to
create a patch against the CVS tree:

cvs diff -u -F ^function foo.module > foo.patch

Or if you had downloaded Drupal instead of checking it out from CVS and were creating a
patch against a local copy of foo.module:

diff -u -F ^function foo.module newfoo.module > foo.patch

Generally, however, a comparison of two source trees is often desired. A possible command to
do so is:

diff -ruN old new > tree.diff

Once a patch is generated, the process of patching the file is even simpler. Based on our
examples above, we could do:

patch < oldnew.patch

Or if you want to patch an entire directory, you should use:

patch -p0 -u < tree.diff

To unapply the patch, use:

patch -p0 -R < tree.diff

Diff on Windows
(against a cvs source with the cvs.exe built-in diff. do diff local files, you need a windows diff
program, command line or visual)

Generic:
find the cvs.exe of your cvs package (WinCVS, TortoiseCVS, cygwin, ...) and make sure
it is in your PATH
cd to your drupal root dir
cvs diff -u [[-r rev1|-D date1] [-r rev2|-D date2]]
[file_to_diff] [> file_to_diff.patch]

-u: unified format
-r: revision(s) to diff

no -r: compare the working file with the revision it was based on

11

Drupal Handbook15 Jan 2006

http://drupal.org/book/view/324#cvs_diff_visual
http://www.wincvs.org/
http://www.tortoisecvs.org/
http://www.cygwin.com/

one -r: compare that revision with your current working file
two -r: compare those two revisions

-D: use a date_spec to specify revisions. examples: "1972-09-24 20:05", "24 Sep 1972
20:05".
file_to_diff: path to the file or directory you want to diff. if you specify a
directory, the output will include the diff of all differing files in this directory and
all subdirectories.
> file_to_diff.patch: creates a patch - saves the diff in
file_to_diff.patch instead of outputting it on stdout. if you send a patch,
make sure it has the proper line endings
see the CVS manual for a complete list of and additional options

via WinCVS GUI
Just select the file you edited and right-mouse-click > "diff selection" (or press the "diff
selected"-icon on the toolbar, or do Menubar > "Query" > "diff selection"). This brings up a
"Diff settings" dialog box that offers some limited options as "revisions to diff" and "ignore
whitespace/case" [update 2003-Feb-07: starting with WinCvs 1.3b11, "Full diff options [are]
available from the diff dialog"]. The resulting diff is output to the WinCVS-Console and can be
copied and pasted.

via WinCVS/TortoiseCVS external diff
WinCVS: Menubar > "Admin" > "Preferences" > "WinCVS" > "External diff program ".
This program will be invoked by the "Diff selection" when "Use the external diff" is
checked.
TortoiseCVS: CVS > "Preferences" > "External diff application". This program will be
invoked by "CVS Diff ..."

Some external visual diff programs for Windows:
Araxis Merge (commercial)
ExamDiff
CSDiff
for those who can live w/ java: Guiffy (commercial)
WinMerge
you may find more here

Notes:

While these programs do a nice job in showing file differences visually, side by side,
non of them (as i can tell) allows to actually save the difference in unified format (most
allow to save a standard diff, though) - update: TortoiseCVS lets you save patches. It
does unified format by default. See its Make Patch option. Note that this ’Make Patch’
option can make recursive patches when applied to directories.
You cannot specify the "-u" in the External diff preferences (eg "diff -u") as this will
result in "Unable to open ’diff -u’ (The system cannot find the file specified.)". A
workaround for this is to, in the preferences, specify a batch-file that calls the external
diff with the -u option. Another workaround is meta-diff, which allows for launching
of special diff programs for certain file types.)

12

15 Jan 2006Drupal Handbook

http://www.cvshome.org/docs/manual/cvs_16.html#IDX250
http://drupal.org/book/view/324#cvs_diff_line_endings
http://www.cvshome.org/docs/manual/cvs.html
http://sourceforge.net/project/shownotes.php?release_id=137229
http://www.araxis.com/
http://www.prestosoft.com/examdiff/examdiff.htm
http://www.componentsoftware.com/csdiff/
http://www.guiffy.com/
http://winmerge.sourceforge.net/
http://directory.google.com/Top/Computers/Software/File_Management/File_Comparison/Windows/
http://meta-diff.sourceforge.net/

line endings: an issue with using diff on windows is that generated patches have windows line
endings, which makes them impossible to apply on unix boxes [1][2]. unfortunately, there seems
to be no way to convince "cvs diff" to output unix line endings*. so the only way for making a
proper patch on windows that i see is to convert / filter the output from "cvs diff" to unix line
endings:

filter: pipe "cvs diff"s output through some dos2unix tool (like the one from Robert B. Clark,
or like cygwins’s dos2unix / d2u):

cvs diff [options] file_to_diff | unix2dos -u > file_to_diff.patch

convert: save "cvs diff"s output to a file:

cvs diff [options] file_to_diff > file_to_diff.patch

and manually convert file_to_diff.patch to unix line endings. every developers editor
should be capable of this; besides, there are many dos2unix versions that operate on files.

Patch on Windows
I haven’t found any Windows-GUI for patch, so the only choice is a Windows port of the Unix
command-line tool. If you know of a Windows GUI for patch, please let me know

Cygwin - a UNIX environment for Windows, including many standard UNIX-tools
(including diff and patch)
pre-compiled binaries, available from various places. Some I’ve found:

http://www.squirrel.nl/people/jvromans/tpj0403-0016b.html
http://www.gnu.org/software/emacs/windows/faq11.html#patch

Note:

I found many of the precompiled binaries have problems with pathnames etc. and do not
work properly. So I would recommend installing cygwin - it takes a while, but after that,
you have a nice Unix environment that works.

* and i tried a lot: checking out all files with unix line endings, various -kb options, external diffs,
patched cvs versions ... nothing. for a discussion of this, check CVS and binary files

You can try also integrated diff/patch packages like GNU diffutils for Windows or get the GNU
utilities for Win 32.

Creating and submitting patches
The process of submitting a patch can seem daunting at first. This text is a collection of
suggestions which can greatly increase the chances of your change being accepted.

13

Drupal Handbook15 Jan 2006

http://lists.drupal.org/pipermail/drupal-devel/2001-November/012862.html
http://lists.drupal.org/pipermail/drupal-devel/2001-November/013063.html
http://drupal.org/book/view/324#footnote
http://home.earthlink.net/~rclark31/files/u2d11.zip
http://home.earthlink.net/~rclark31/freeware.html
http://www.cygwin.com/
http://www.squirrel.nl/people/jvromans/tpj0403-0016b.html
http://www.gnu.org/software/emacs/windows/faq11.html#patch
http://www.cvshome.org/cyclic/cvs/dev-binary.html
http://sourceforge.net/project/shownotes.php?release_id=83227
http://unxutils.sourceforge.net/
http://unxutils.sourceforge.net/

The easiest way to get set up for making and sending patches is to get CVS working. Then you
can just type: cvs diff -u -F^f [file to patch] to generate a patch. To output it to a
file, go: cvs diff -u -F^f [file to patch] > [outfile]

Coding style:
If your code deviates too much from the Code Conventions, it is more likely to be rejected
without further review and without comment.

diff -u:
Use diff -u or diff -urN to create patches: when creating your patch, make sure to
create it in "unified diff" format, as supplied by the -u argument to diff. Patches should be
based in the root source directory, not in any lower subdirectory. Make sure to create
patches against a "vanilla", or unmodified source tree.

diff -F^f:
Use the additional -F^f argument to diff to create patches that are easier to read. -F^f
tells diff to include the last matching line in the header of the created patch. This will be
the last function definition if the files adhere to the Drupal Code Conventions.

Describe your changes:
Describe the technical detail of the change(s) your patch includes and try to be as specific as
possible. Note that we prefer technical reasoning above marketing: give us clear reasons
why "this way" is good. Justify your changes and try to carry enough weight. It is important
to note the version to which this patch applies.

Separate your changes:
Separate each logical change into its own patch. For example, if your changes include both
bug fixes and performance enhancements, separate those changes into two or more patches.
If your changes include an API update, and a new module which uses that new API,
separate those into two patches.

Verifying your patch
The CVS review team is overloaded reviewing patch submissions. Please make their lives
easier by assuring the following:

Test your code!
Make sure your code is clean and secure. If your patch is just a quick hack, then don’t
set your issue to Patch status.
Patch against HEAD. If you only have a patch against a prior revisision, then don’t
assign your issue to Patch status

Submitting your patch:
Patches should be submitted via the issue tracker. Create a bug report or feature request,
attach your patch using the file upload form and set the issue’s status to patch. Setting the
status to patch is important as it adds the patch to the patch queue.

Rules of reviewing patches
1. Do review the code not the person.
2. Do not take a review personally. If you get a bad review deal with it and make your patch

better. It is a learning experience.
3. Do help to review other peoples code as it will make your own code better. It will make

your more critical and likely to spot your own mistakes. Might also teach you a trick or two

14

15 Jan 2006Drupal Handbook

http://drupal.org/book/view/318
http://drupal.org/book/view/318
http://drupal.org/project
http://drupal.org/project/issues?states=8

you didn’t know about.
4. Do not feel obligated to review others code even if people review your code. (It comes

highly recommended.)
5. Do give friendly suggestions on how a person can improve their code.
6. Do not demand that your code gets reviewed. Your time will come.
7. Do remind people nicely that it would be nice if someone reviewed your code, but only

once a week.
8. Do this to get a good review:
9.

Do make sure the code actually works. Working code is a big plus.
Do make sure the patch is current with Drupal CVS. Feel free to refuse to review
patches that don’t apply nicely to Drupal CVS.
Do look at the code and make sure it follows the Drupal coding standards.
Do make sure the code uses available support functions and doesn’t re-invent the
wheel.
Do write documentation both in the code and for the users.

10. Do this when reviewing:
11.

Do make sure the patch does everything in item 8.
Do comment on the general coding style.
Do comment on the user interface.
Do make suggestions on how to improve the patch.
Do give your vote (+1/-1) as to whether this should be included in Drupal.

12. Just do it.

The revision process
Changes to the Drupal core are usually made after consideration, planning, and consultation.
They are also made on a priority basis--fixes come before additions, and changes for which there
is a high demand come before proposals that have gone relatively unnoticed. Any potential
change has to be considered not only on its own merits but in relation to the aims and principles
of the project as a whole.

The particular stages that a new feature goes through vary, but a typical cycle for a significant
change might include:

General discussion of the idea, for example through a posting in a drupal.org forum. This
can be a chance to gauge support and interest, scope the issue, and get some
direction and suggestions on approaches to take. If you’re considering substantive changes,
starting out at the discussion level - rather than jumping straight into code changes - can
save you a lot of time.
Posting an issue through the drupal.org project system.
Discussion raising issues on the proposed direction or solution, which may include a
real-time meeting through IRC.
Individual Drupal community members may vote for (+1) or against (-1) the change. While

15

Drupal Handbook15 Jan 2006

http://drupal.org/book/view/10250

informal, this voting system can help quantify support.
Producing a patch with specific proposed code changes.
Review of the changes and further discussion.
Revisions to address issues.
Possible application of the patch.

The process of discussion and revision might be repeated several times to encompass diverse
input. At any point in the process, the proposal might be:

Shelved as impractical or inappropriate.
Put off until other logically prior decisions are made.
Rolled into another related initiative.
Superceded by another change.

If you submit suggestions that don’t end up being adopted, please don’t be discouraged! It
doesn’t mean that your ideas weren’t good--just that they didn’t end up finding a place. The
discussion itself may have beneficial outcomes. It’s all part of collaboratively building a quality
open source project.

Criteria for evaluating proposed changes
The following criteria are used by core developers in reviewing and approving
proposed changes:

The changes support and enhance Drupal project aims.
The proposed changes are current. Especially for new features,
priority is usually given to development for the "HEAD" (the most
recent development version of the code, also referred to as the CVS version)
as opposed to released versions. There may have been significant
changes since the last release, so developing for the CVS version means
that
The proposed change doesn’t raise any significant issues or
risks. Specifically, issues that have been raised in the review
process have been satisfactorily addressed.
The changes are well coded. At a minimum, this means coding in accordance with the Drupal
coding standards. But
it also means that the coding is intelligent and compact. Elegant
solutions will have greater support than cumbersome ones that accomplish the
same result.
There is demonstrated demand and support for the change. Demand
is indicated by, e.g., comments on the drupal.org issues system or comments
in forums or the drupal-dev email list.
The change will be used by a significant portion of the installed Drupal base as opposed being
relevant only to a small subset of Drupal users.
The benefits of the change justifies additional code and resource
demands. Every addition to the code base increases the quantity of

16

15 Jan 2006Drupal Handbook

http://drupal.org/node/view/10250

code that must be actively maintained (e.g., updated to reflect new design
changes or documentation approaches). Also, added code increases the
overall Drupal footprint through, e.g., added procedure calls or database
queries. Benefits of a change must outweigh these costs.

Maintaining a project on drupal.org
Each drupal.org project (a contributed theme, module or translation) needs to be maintained in
the contributions repository. Before creating a project page on drupal.org, apply for a CVS
account and commit your project to the repository. If you are not using the drupal.org
infrastructure, you can’t setup a project page on drupal.org nor can you offer your module for
download at drupal.org.

To get your project listed on drupal.org after it has been committed to CVS, fill in the form at
http://drupal.org/node/add/project_project/. Make sure that the ’Short project name’ matches
the directory name in the CVS repository. For example, the contributions/modules/my_module
module has the short name my_module.

Note that the newly created project will not be instantly available as it will need to be approved
by one of the administrators. After that, it will appear soon after you committed some
code/updates to the contributions repository. Once the project page became available, people
will be able to file bugs against your project, add tasks or request new features. Your project will
also become available for download.

Downloads and packaging
As soon your project page has been activated and assuming it is properly configured, drupal.org
will automatically package your project and make it available for download. Projects are
packaged once or twice a day so your project will not be available instantly.

Managing releases
Releases are handled using CVS branches. By default, only the CVS HEAD version (development
version) of your project is packaged and offered for download.

However, if you branch your project using the DRUPAL-4-5 branch name, drupal.org will
package the Drupal 4.5 compatible release of your project. For this to work, you must use the
correct branch names. A list of valid branch names can be found in the contributions repository’s
FAQ.txt.

As projects are only packaged once or twice a day, it might take up to 24 hours for new releases
to become available on the website or for updates to propagate to the downloads.

If you found a bug that needs to be fixed in several releases of your project, make sure to commit
the fix to the different branches unless you are no longer maintaining certain releases of your
project.

17

Drupal Handbook15 Jan 2006

http://drupal.org/node/321
http://drupal.org/cvs-account
http://drupal.org/cvs-account
http://drupal.org/project/releases
http://drupal.org/node/add/project_project/
http://drupal.org/project/releases
http://drupal.org/node/1002
http://cvs.drupal.org/viewcvs/*checkout*/contributions/FAQ.txt
http://cvs.drupal.org/viewcvs/*checkout*/contributions/FAQ.txt

Branching and releases are restricted to the modules, themes, theme-engines and
translations directories in the contributions repository. Personal sandboxes in the sandbox
directory can’t be branched, won’t be packaged and can’t get a project page on drupal.org.

Orphaned projects
If you are no longer capable of maintaining your project, please add a note to your project page
and ask in the forums whether someone is willing to take over maintenance. Proper
communication is key so make sure to mark your project as orphaned. If you found a new
maintainer or if you are willing to maintain an orphaned project, get in touch with a site
maintainer so we can transfer maintainership.

Tips for contributing to the core
The following tips might improve the chances of your contributions being accepted:

Take a step back and objectively evaluate whether the changes are appropriate for the
Drupal core. Ask yourself:

Is the feature already implemented? Search the forums and issue tracker.
Could the feature be implemented as a contributed module rather than a patch to the
core?
Will the change benefit a substantial portion of the Drupal install base?
Is the change sufficiently general for others to build upon cleanly?

Be explanatory, provide descriptions and illustrations, make a good
case. Don’t count on others downloading, installing, and testing your
changes. Rather, show them in a nutshell what your changes would
mean. Anticipate and address questions or concerns. If
appropriate, provide screenshots.
Be friendly and respectful. Acknowledge the effort others put in.
Be open to suggestions and to other ways of accomplishing what you’re
aiming for.
Be persistent. If you don’t get any response right away, don’t
necessarily give up. If you’re still convinced your idea has merit,
find another way to present it.
Respond, in a timely way, to suggestions, requests, or issues
raised. Revise your work accordingly.
If some time has gone by, update your changes to work with the current CVS version.

18

15 Jan 2006Drupal Handbook

http://drupal.org/node/321

Mailing lists
Newsletter
A read-only mailing list used for sending out the Drupal newsletter.

view archive Â· search archive Â· mailman page

Drupal-support
If you need help with installing, running or anything Drupal related this is the list to post your
questions.

view archive Â· search archive Â· mailman page

Drupal-devel
This list is for those who want to either take part or just observe Drupal development.

view archive Â· search archive Â· mailman page

Drupal-docs
The place for non-programmers that want to contribute and work on documentation.

view archive Â· search archive Â· mailman page

Drupal-cvs
All CVS commits are posted to this list, a daily digest is also posted to drupal-devel though.

view archive Â· search archive Â· mailman page

Infrastructure
A mailing list for those maintaining the Drupal infrastructure, most notably the drupal.org
website.

view archive Â· search archive Â· mailman page

Subscribe

19

Drupal Handbook15 Jan 2006

http://lists.drupal.org/archives/newsletter/
http://lists.drupal.org/archives/cgi-bin/namazu.cgi?idx
http://lists.drupal.org/listinfo/newsletter
http://lists.drupal.org/archives/drupal-support/
http://lists.drupal.org/archives/cgi-bin/namazu.cgi?idx
http://lists.drupal.org/listinfo/drupal-support
http://lists.drupal.org/archives/drupal-devel/
http://lists.drupal.org/archives/cgi-bin/namazu.cgi?idx
http://lists.drupal.org/listinfo/drupal-devel
http://lists.drupal.org/archives/drupal-docs/
http://lists.drupal.org/archives/cgi-bin/namazu.cgi?idx
http://lists.drupal.org/listinfo/drupal-docs
http://lists.drupal.org/archives/drupal-cvs/
http://lists.drupal.org/archives/cgi-bin/namazu.cgi?idx
http://lists.drupal.org/listinfo/drupal-cvs
http://lists.drupal.org/archives/infrastructure/
http://lists.drupal.org/archives/cgi-bin/namazu.cgi?idx
http://lists.drupal.org/listinfo/infrastructure

Mail address:

Lists:
 newsletter
 drupal-support
 drupal-devel
 drupal-docs
 drupal-cvs
 infrastructure

Mailing of project issues
Every project issue for Drupal with patch status is emailed to the drupal-devel mailing list when
updated. These are mailed to promote peer review of code potentially going into Drupal. Other
issues are not emailed because it would make the mailing list less useful as email volume
increases. You can subscribe to project issue updates for any contributed module, theme, or
translation.

20

15 Jan 2006Drupal Handbook

http://drupal.org/node/772
http://drupal.org/project/issues/subscribe

Coding standards
Drupal Coding Standards
Note: The Drupal Coding Standards applies to code that is to become a part of Drupal. This document is
based on the PEAR Coding standards.

Indenting
Use an indent of 2 spaces, with no tabs.

Control Structures
These include if, for, while, switch, etc. Here is an example if statement, since it is the most
complicated of them:

if (condition1 || condition2) {
 action1;
}
elseif (condition3 && condition4) {
 action2;
}
else {
 defaultaction;
}

Control statements should have one space between the control keyword and opening
parenthesis, to distinguish them from function calls.

You are strongly encouraged to always use curly braces even in situations where they are
technically optional. Having them increases readability and decreases the likelihood of logic
errors being introduced when new lines are added.

For switch statements:

switch (condition) {
 case 1:
 action1;
 break;

 case 2:
 action2;
 break;

 default:
 defaultaction;
 break;
}

21

Drupal Handbook15 Jan 2006

http://pear.php.net/manual/en/standards.php

Function Calls
Functions should be called with no spaces between the function name, the opening parenthesis,
and the first parameter; spaces between commas and each parameter, and no space between the
last parameter, the closing parenthesis, and the semicolon. Here’s an example:

$var = foo($bar, $baz, $quux);

As displayed above, there should be one space on either side of an equals sign used to assign the
return value of a function to a variable. In the case of a block of related assignments, more space
may be inserted to promote readability:

$short = foo($bar);
$long_variable = foo($baz);

Function Declarations
function funstuff_system($field) {
 $system["description"] = t("This module insert funny text into posts randomly.");
 return $system[$field];
}

Arguments with default values go at the end of the argument list. Always attempt to return a
meaningful value from a function if one is appropriate.

Comments
Inline documentation for classes should follow the Doxygen convention. More information
about Doxygen can be found here:

Document block syntax
Comment commands

Note that Drupal uses the following docblock syntax:

/**
 * Comments.
 */

And all Doxygen commands should be prefixed with a @ instead of a /.

Non-documentation comments are strongly encouraged. A general rule of thumb is that if you
look at a section of code and think "Wow, I don’t want to try and describe that", you need to
comment it before you forget how it works.

C style comments (/* */) and standard C++ comments (//) are both fine. Use of Perl/shell style
comments (#) is discouraged.

22

15 Jan 2006Drupal Handbook

%20http://www.stack.nl/~dimitri/doxygen/docblocks.html
%20http://www.stack.nl/~dimitri/doxygen/commands.html

Including Code
Anywhere you are unconditionally including a class file, use require_once(). Anywhere you are
conditionally including a class file (for example, factory methods), use include_once(). Either of
these will ensure that class files are included only once. They share the same file list, so you
don’t need to worry about mixing them - a file included with require_once() will not be included
again by include_once().

Note: include_once() and require_once() are statements, not functions. You don’t need parentheses around
the filename to be included.

PHP Code Tags
Always use <?php ?> to delimit PHP code, not the <? ?> shorthand. This is required for Drupal
compliance and is also the most portable way to include PHP code on differing operating
systems and setups.

Header Comment Blocks
All source code files in the core Drupal distribution should contain the following comment block
as the header:

<?php
/* Id */

This tag will be expanded by the CVS to contain useful information

<?php
/* $Id: CODING_STANDARDS.html,v 1.4 2004/10/27 11:55:32 uwe Exp $ */

Using CVS
Include the Id CVS keyword in each file. As each file is edited, add this tag if it’s not yet present
(or replace existing forms such as "Last Modified:", etc.).

The rest of this section assumes that you have basic knowledge about CVS tags and branches.

CVS tags are used to label which revisions of the files in your package belong to a given release.
Below is a list of the required CVS tags:

DRUPAL-X-Y
(required) Used for tagging a release. If you don’t use it, there’s no way to go back and
retrieve your package from the CVS server in the state it was in at the time of the release.

23

Drupal Handbook15 Jan 2006

Example URLs
Use "example.com" for all example URLs, per RFC 2606.

Naming Conventions

Functions and Methods
Functions and methods should be named using lower caps and words should be separated with
an underscore. Functions should in addition have the grouping/module name as a prefix, to
avoid name collisions between modules.

Private class members (meaning class members that are intended to be used only from within
the same class in which they are declared; PHP 4 does not support truly-enforceable private
namespaces) are preceded by a single underscore. For example:

_node_get()

$this->_status

Constants
Constants should always be all-uppercase, with underscores to separate words. Prefix constant
names with the uppercased name of the module they are a part of.

Global Variables
If you need to define global variables, their name should start with a single underscore followed
by the module/theme name and another underscore.

Filenames
All documentation files should have the filename extension ".txt" to make viewing them on
Windows systems easier. Also, the filenames for such files should be all-caps (e.g. README.txt
instead of readme.txt) while the extension itself is all-lowercase (i.e. txt instead of TXT).

Examples: README.txt, INSTALL.txt, TODO.txt, CHANGELOG.txt etc.

Doxygen formatting conventions
Doxygen is a documentation generation system. The documentation is extracted directly from
the sources, which makes it much easier to keep the documentation consistent with the source
code.

24

15 Jan 2006Drupal Handbook

%20http://www.rfc-editor.org/rfc/rfc2606.txt

There is an excellent manual at the Doxygen site. The following notes pertain to the Drupal
implementation of Doxygen.

General documentation syntax

To document a block of code, the syntax we use is:

/**
 * Documentation here
 */

Doxygen will parse any comments located in such a block. Our style is to use as few
Doxygen-specific commands as possible, so as to keep the source legible. Any mentions of
functions or file names within the documentation will automatically link to the referenced
code, so typically no markup need be introduced to produce links.

Documenting files

It is good practice to provide a comment describing what a file does at the start of it. For
example:

<?php
/* $Id: theme.inc,v 1.202 2004/07/08 16:08:21 dries Exp $ */

/**
 * @file
 * The theme system, which controls the output of Drupal.
 *
 * The theme system allows for nearly all output of the Drupal system to be
 * customized by user themes.
 */

The line immediately following the @file directive is a short description that will be shown
in the list of all files in the generated documentation. Further description may follow after a
blank line.

Documenting functions

All functions that may be called by other files should be documented; private functions
optionally may be documented as well. A function documentation block should
immediately precede the declaration of the function itself, like so:

/**
 * Verify the syntax of the given e-mail address.
 *
 * Empty e-mail addresses are allowed. See RFC 2822 for details.
 *
 * @param $mail
 * A string containing an email address.
 * @return
 * TRUE if the address is in a valid format.
 */
function valid_email_address($mail) {

25

Drupal Handbook15 Jan 2006

http://www.stack.nl/~dimitri/doxygen/manual.html

The first line of the block should contain a brief description of what the function does. A
longer description with usage notes may follow after a blank line. Each parameter should be
listed with a @param directive, with a description indented on the following line. After all the
parameters, a @return directive should be used to document the return value if there is one.
Functions that are easily described in one line may omit these directives, as follows:

/**
 * Convert an associative array to an anonymous object.
 */
function array2object($array) {

The parameters and return value must be described within this one-line description in this
case.

Documenting hook implementations

Many modules consist largely of hook implementations. If the implementation is rather
standard and does not require more explanation than the hook reference provides, a
shorthand documentation form may be used:

/**
 * Implementation of hook_help().
 */
function blog_help($section) {

This generates a link to the hook reference, reminds the developer that this is a hook
implementation, and avoids having to document parameters and return values that are the
same for every implementation of the hook.

Documenting themeable functions

In order to provide a quick reference for theme developers, we tag all themeable functions
so that Doxygen can group them on one page. To do this, add a grouping instruction to the
documentation of all such functions:

/**
 * Format a query pager.
 *
 * ...
 * @ingroup themeable
 */
function theme_pager($tags = array(), $limit = 10, $element = 0, $attributes = array()) {
 ...
}

The same pattern can be used for other functions scattered across multiple files that need to
be grouped on a single page.

26

15 Jan 2006Drupal Handbook

Comments
Inline documentation for classes should follow the PHPDoc convention, similar to Javadoc.
More information about PHPDoc can be found here:
http://phpdocu.sourceforge.net/spec/howto.html

Non-documentation comments are strongly encouraged. A general rule of thumb is that if you
look at a section of code and think "Wow, I don’t want to try and describe that", you need to
comment it before you forget how it works.

C style comments (/* */) and standard C++ comments (//) are both fine. Use of Perl/shell
style comments (#) is discouraged.

Indenting
Use an indent of 2 spaces, with no tabs. No trailing spaces.

PHP Code tags
Always use <?php ?> to delimit PHP code, not the <? ?> shorthand. This is required for
Drupal compliance and is also the most portable way to include PHP code on differing
operating systems and setups.

SQL naming conventions
Don’t use (ANSI) SQL / MySQL / PostgreSQL / MS SQL Server / ... Reserved Words for
column and/or table names. Even if this may work with your (MySQL) installation, it may
not with others or with other databases. Some references:

(ANSI) SQL Reserved Words
MySQL Reserved Words: 4.x, 3.23.x, 3.21.x
PostgreSQL Reserved Words
MS SQL Server Reserved Words

Some commonly misused keywords: TIMESTAMP, TYPE, TYPES, MODULE, DATA,
DATE, TIME, ...
See also [bug] SQL Reserved Words.

Capitalization, Indentation
UPPERCASE reserved words
lowercase (or Capitalize) table names
lowercase column names

27

Drupal Handbook15 Jan 2006

http://phpdocu.sourceforge.net/spec/howto.html
http://developer.mimer.se/validator/sql-reserved-words.tml
http://www.mysql.com/doc/en/Reserved_words.html
http://www.educat.hu-berlin.de/doc/mysql-3.23/manual_Reference.html#Reserved_words
http://emily.soils.wisc.edu/mysql_docs/manual.html#Reserved%20words
http://www.postgresql.org/docs/7/interactive/syntax.htm#AEN442
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_ra-rz_9oj7.asp
http://drupal.org/node/view/371

Example:

 SELECT r.rid, p.perm
 FROM {role} r
 LEFT JOIN {permission} p ON r.rid = p.rid -- may be on one line with prev.
 ORDER BY name

Naming
Use plural or collective nouns for table names since they are sets and not scalar values.
Name every constraint (primary, foreign, unique keys) yourself. Otherwise you’ll see
funny-looking system-generated names in error messages. This happened with the
moderation_roles table which initially defined a key without explicite name as KEY
(mid). This got mysqldump’ed as KEY mid (mid) which resulted in a syntax error
as mid() is a mysql function (see [bug] mysql --ansi cannot import install database).
Index names should begin with the name of the table they depend on, eg. INDEX
users_sid_idx.

References:

Joe Celko - Ten Things I Hate About You
Joe Celko - SQL for Smarties: Advanced SQL Programming
RDBMS Naming conventions
SQL Naming Conventions

Functions
Functions should be named using lower caps and words should be separated with an
underscore. Functions should have the grouping/module name as a prefix, to avoid name
collisions between modules.

Constants
Constants should always be all-uppercase, with underscores to separate words. Prefix constant
names with the uppercased name of the module they are a part of.

Control structures
These include if, for, while, switch, etc. Here is an example if statement, since it is the
most complicated of them:

if ((condition1) || (condition2)) {
 action1;
}
elseif ((condition3) && (condition4)) {
 action2;
}
else {
 defaultaction;
}

28

15 Jan 2006Drupal Handbook

http://drupal.org/node/view/893
http://www.intelligententerprise.com/001205/celko1_1.shtml
http://www.amazon.com/exec/obidos/tg/detail/-/1558605762/ref=lib_rd_ss_TT04/102-7068143-3629730?v=glance&s=books&vi=reader&img=17#reader-link
http://www.ss64.com/orasyntax/naming.html
http://www.dbazine.com/gulutzan5.html

Control statements should have one space between the control keyword and opening
parenthesis, to distinguish them from function calls.

You are strongly encouraged to always use curly braces even in situations where they are
technically optional. Having them increases readability and decreases the likelihood of logic
errors being introduced when new lines are added.

For switch statements:

switch (condition) {
 case 1:
 action1;
 break;

 case 2:
 action2;
 break;

 default:
 defaultaction;
 break;
}

Header comment blocks
All Drupal source code files should start with a header containing the RCS Id keyword:

<?php
// $Id: CODING_STANDARDS,v 1.1 2001/11/05 07:32:17 natrak Exp $

Note that everything after the starting $Id and before the closing $ is automatically generated by
CVS - you shouldn’t edit this manually. If you add a new file to CVS, just write // Id.

29

Drupal Handbook15 Jan 2006

https://www.cvshome.org/docs/manual/cvs-1.11.18/cvs_12.html#SEC97

CVS
CVS (the concurrent version system) is a tool to manage software revisions and release control in a
multi-developer, multi-directory, multi-group environment. It comes in very handy to maintain
local modifications.

Thus, CVS helps you if you are part of a group of people working on the same project. In large
software development projects, it’s usually necessary for more than one software developer to
be modifying modules of the code at the same time. Without CVS, it is all too easy to overwrite
each others’ changes unless you are extremely careful.

In addition, CVS helps to keep track of all changes. Therefore, the CVS server has been setup to
mail all CVS commits to all maintainers. Thus, it does not require any effort to inform the other
people about the work you have done, and by reading the mails everyone is kept up to date.

CVS concepts
Drupal uses Concurrent Versions System (CVS) to co-ordinate development, which can be
thought of as a system for controlling the contents of a library. Describing CVS in terms of a
library, books, and editions is only a metaphor - unlike a real, phisical library, no matter how
many people check out a book, it will always be available to the next person.

As with any library though, there are rules of behaviour towards other users and how you treat
the library materials, no need to worry about overdue library tickets or leaving coffee stains on
pages, but please be sure to act responsibly when contributing content to the library.

Repository

A repository can be thought of as a book, Drupal has two repositories which can be checked
out (downloaded to your local computer):

Drupal
the core Drupal code, i.e. what is downloaded as ’Drupal’.
Contributions
modules, themes, translations, etc. supplied by contributors, i.e. all Drupal material that
is not in the core.

Branch

CVS tracks different versions of content. Imagine different editions of a text book, each
edition including amendments and additions - each edition is known as a ’branch’, and has
a branch tag to identify it, e.g. Drupal 4.5. Every branch corresponds to a particular version
of Drupal that gets released.

Head

30

15 Jan 2006Drupal Handbook

This is a special edition of the book (repository) which has not been published yet, or in
CVS speak has not been "branched" yet. Think of "head" as a manuscript of the next edition of
the book. Amendments and additions are added to the manuscript, it’s proof-read and tested,
and once it’s ready it gets published (branched) as a new edition.

Working copy/Work area

Users can check out a copy of a book to work on locally, the original remains in the library
and can be checked out by other users. When checking out a book remember that it is an
edition (branch or head) of the book (repository). The copy of the book which is on the
user’s local computer is known as the "Working copy", "Work area" or "Work directory".

Changes the user makes to the local copy can be sent back to the library for inclusion in the
repository.

Project

Modules, themes or translations can be added (committed) by users to the Contributions
book (repository) at any time. It’s possible to add to the manuscript (head) of Contributions,
or any of the previous editions (branches). The website drupal.org tracks user additions to
the Contributions book (repository) as "Projects". Each project has a description page from
which it can be downloaded, and where issues and feature requests can be added by users.

Patch

Only a few Drupal developers are able to make changes directly to the Drupal book
(repository). All other users who want to include changes they’ve made while working on
their local copy of the Drupal book (repository), must create a file showing the differences
between the local version and the version at drupal.org. This differences file is known as a
"patch", and is sent to the rest of the development community by creating an "issue" at
drupal.org and attaching the file.

Using CVS with branches and tags
To manage the different Drupal versions, we use tags and branches. A branch specifies a major
Drupal version. For example, all 4.4.x versions belong in the DRUPAL-4-4 branch. Whenever we
release a specific version, we create a tag. A tag is a marker which defines a snapshot of all the
files in the CVS at a certain moment. For example, the tag DRUPAL-4-4-0 specifies all files at the
time of the 4.4.0 release. The HEAD branch is special and is used to refer to the latest
development version.

For an up-to-date complete list of branches and tags, see "Show files using tag:" at ViewCVS (at
the bottom).

Here’s a quick guide on using tags and branches. This assumes you have successfully checked
out the ’main’ and ’contributions’ repositories. In my case, I usually make a folder in my home
directory for each cvs server. In Drupal’s case, cvs.drupal.org. For instance, you’ve made the
CVS folder and here you check out your copy of the CVS version of Drupal.

31

Drupal Handbook15 Jan 2006

http://cvs.drupal.org/viewcvs/drupal/
http://drupal.org/node/view/320
http://drupal.org/node/view/321

~cvs.drupal.org$ cvs -d :pserver:anonymous@cvs.drupal.org:/cvs/drupal login
~cvs.drupal.org$ cvs co drupal

This should leave you with a folder cvs.drupal.org/drupal which contains the current CVS
code. You can keep this up-to-date by going into the cvs.drupal.org/drupal directory and
using the command

~/cvs.drupal.org/drupal$ cvs update -dP

which will give you the latest copy, create any new directories that exist in the repository (-d),
and trim unused directories (-P). Note that you don’t need to specfiy the server at this point
since the drupal directory contains a CVS folder that contains the repository and root
information.

You’ve also done this for the contributions,

~cvs.drupal.org$ cvs -d :pserver:anonymous@cvs.drupal.org:/cvs/drupal-contrib login
~cvs.drupal.org$ cvs co contributions

Which leaves you with the latest contributions in the cvs.drupal.org/contributions
directory.

But now you want to have a nice copy of the 4.3.0 version, and you don’t want to have to
download the tgz file all the time. The CVS maintainer has branched the drupal repository and
tagged it to keep track of this release. If you download it directly with the release tag it’s going
to overwrite your drupal folder. You probably want to keep it simple and use this command:
~cvs.drupal.org$ cvs -d :pserver:anonymous@cvs.drupal.org:/cvs/drupal -q checkout -d drupal-4.3 -r DRUPAL-4-3 drupal

That’s going to create a new directory cvs.drupal.org/drupal-4.3.0 that contains the
4.3.0 version. Once it’s been checked out, you don’t need to worry about specifying it again. The
CVS directory in the drupal-4.3.0 directory has the tag information along with repository
and root information like we saw before. Just go into the drupal-4.3 folder and execute

~/cvs.drupal.org/drupal-4.3$ cvs update -dP

to keep your copy of the 4.3.0 branch up to date.

Windows
You may have noticed this was geared towards the linux user. Sorry, I haven’t used the
windows clients for CVS. I’m sure they would work, I just haven’t tried them (for very long).
You could probably do this same thing on your windows box by installing one of the windows
GUIs or using Cygwin, a GNU/UNIX client for windows. Probably the easiest way it to use
TortoiseCVS.

32

15 Jan 2006Drupal Handbook

http://www.cygwin.com/
http://drupal.org/node/view/635

Available Branches
The available branches currently are:

HEAD
DRUPAL-4-6
DRUPAL-4-5
DRUPAL-4-4
DRUPAL-4-3
DRUPAL-4-2
DRUPAL-4-1
DRUPAL-4-0
DRUPAL-3-0

The DRUPAL-4-3-0 tag we used above is a marker in the DRUPAL-4-3 branch. Other tags for
DRUPAL-4-3 are DRUPAL-4-3-1 and DRUPAL-4-3-2.

Apply for contributions CVS access

CVS GUIs and clients
There are a number of CVS ’front-ends’ or GUIs which aim to improve on the command-line
tools of CVS. These tools are grouped here by operating system/platform.

Cross-platform CVS clients
There are a number of GUI clients which run on multiple operating systems and platforms

Eclipse CVS plug-in
Perhaps the best CVS front-end I’ve used is the cross-platform tool Eclipse (www.eclipse.org). It
has the functionality to do almost anything you can do with the command line, but you can use
the console if you need to. As well, you can use it to edit the PHP code with another plugin.

CVS front ends for Windows
There are many CVS GUI front ends for Windows. Please add a new section if you know of
additional ones

TortoiseCVS
TortoiseCVS lets you work with files under CVS version control directly from Windows
Explorer. It’s freely available under the GPL. The following tutorial teaches how to use
TortoiseCVS with Drupal.

33

Drupal Handbook15 Jan 2006

http://www.eclipse.org/
http://www.tortoisecvs.org/

Download TortoiseCVS from http://www.tortoisecvs.org/download.shtml and install it.
In Windows Explorer, select the folder under which you want the Drupal source directory
to live. Right-click on it. There are two new sections in the context menu - CVS Checkout
and CVS >. Select CVS Checkout.
Fill in the following fields:

Protocol: Password server (:pserver:)
Server: [cvs.]drupal.org
Repository folder: /cvs/drupal (main distro) or /cvs/drupal-contrib (contributions)
User name: anonymous
Module: drupal (main distro) or

contributions
(contributions)

and press "OK".

You will be asked for password. Enter anonymous and press "OK".
A log window which monitors the checkout process will appear. Checking out the whole
CVS repository will take a while.
If everything works, you will see the message "Success, CVS operation completed" at the
end of the log. A new directory (named like the module selected before) with the sources
will be created.
To bring your Drupal source tree up-to-date, select it’s root folder ("drupal" /
"contributions"), right-click it and do a "CVS Update".

The process above retrieves the freshest files from the repository (the so-called HEAD branch).
These are sometimes unstable. To get Drupal modules and themes that are stable and ready for
production (which you can also download from the Drupal downloads page), follow the process
described above, but before hitting "OK" you need to:

Click on the "Revision" tab on the CVS checkout dialog.
Enable "Get tag/branch".
Enter DRUPAL-4-1-0 or DRUPAL-4-00 depending on the version you are using in the
tag/branch field.
Hit OK.

You can also generate patch files with TortoiseCVS. Just select the files which you have patched
in Windows Explorer. Then right click into the CVS => Make Patch menu item. Then you
may wish to read Creating and sending your patches

WinCVS
WinCVS is another graphical CVS client available for MS Windows and for Macs. You can
download the latest version from http://www.wincvs.org/. The checkout / update process is
similar to the one described above.

34

15 Jan 2006Drupal Handbook

http://www.tortoisecvs.org/download.shtml
http://drupal.org/node.php?id=68
http://drupal.org/book/view/325
http://www.wincvs.org/

CVS on Mac OS X
There are a number of good CVS clients for Mac OS X.

CVL: point and click CVS
For Mac users who are unused to the command line, CVS can at first look a bit daunting.
Fortunately there is an application called CVL that provides control of CVS through a point and
click interface. Most of the instructions for using CVL will also apply when using other
applications to control CVS.

Setting up/step by step CVS

Here is a step-by-step guide to installing and setting up CVL.

1. Install CVS. The first step of using any application is of course to install it - CVS is installed
by default with the Apple Developer tools, so if you haven’t installed these yet, download
the latest version and install them. They also include a lot of other useful stuff like Project
Builder and File Merge (Apple Developer Membership is required, but free).

2. Install CVL

The CVL package and complete installation instructions are available at
http://www.sente.ch/software/cvl/

3. Setup CVL to work with CVS.

Set CVS to ignore the ’hidden’ .DS_Store files which OS X creates in each folder. To do this
you need to open the Terminal (Application->Utilities->Terminal), and type the following:

cd

takes you to root of your account

pico

opens the Pico text application

.DS_Store

specifies which file types you want CVS to ignore

Now press the keys: Control and x at the same time

This closes the document you’ve just written, it will ask you if you want to save it - press y
for yes, then type in the name of the file .cvsignore (note the ’.’) and press return. You’ve
finished with the Terminal, so you can quit it.

35

Drupal Handbook15 Jan 2006

http://sente.epfl.ch/software/cvl/
http://developer.apple.com/tools/download/
http://www.sente.ch/software/cvl/

4. Create a folder to put the CVS files into. The best place to do this is in the ’Sites’ folder, to
make it easy to use them through the Apache server built into your system. You can name the
folder anything you want, my one is called ’drupal_cvs’.

5. Step five open the CVL application, you now need to Checkout (download) the latest
version of the Drupal CVS like this:

Tools->Repositories->Show Repositories

Click Add

Choose a repository dialog box will appear.

In Repository type choose pserver.

CVS User: your Username (that you applied for CVS with)

Host: cvs.drupal.org

Path: /cvs/drupal (main distro) or /cvs/drupal-contrib (contributions)

Password: your password (that you applied for CVS with)

Click Add.

Next go to Tools->Repositories->Show Repositories

The Drupal repository is now listed in the Repositories window. Select it and press
Checkout...

Checkout Module dialog box appears.

Choose Module: drupal (main distro) or contributions (contributions)

New work area location: Choose... select the folder you created in step four.

Press Checkout.

Wait patiently, this may take some time, as the whole of the Repository needs to be
downloaded - you can see this happening if you open the console window
(Tools->Console->Show Console), don’t worry if you don’t see anything at first, CVL usually
thinks about what it’s doing for a minute or two before taking action.

When this is finished you will have a copy of the Drupal repository files in the folder you
created on your hard drive, this is your Work Area, where you work on projects before
uploading them to the repository for others to use.

36

15 Jan 2006Drupal Handbook

Basic CVS with CVL

You now have a Work Area on your hard drive which is a mirror of the Repository on the
Drupal server. You can see this by using the CVL menu Work Area->Open Recent and selecting
the repository you just downloaded (drupal or contributions).

You can use this work area in the same way you would any other folder on your hard drive -
create new files with BBEdit (or whatever you use), drag files to the trash, add new folders,
delete folders - it’s just a regular folder.

Once you’ve done some work you want to upload back to the Drupal server here’s what you do:

Update the CVS by selecting the folder the new work is in, then Control+Click on the folder and
choose Update from the contextual menu that pops up (or through the menu File->Update).
CVS now shows any new files or folders that you have added (with a blue * in front).

Next you need to tell CVS to mark the files and folders for upload next time you send your
changes to the Drupal repository. To do this select the files and folders and Control+Click,
choose Add To Work Area (or through the menu File->Add To Work Area).

To upload your work to the Drupal repository, select your files and folders and Control+Click,
choose Commit... (or through the menu File->Commit...). CVS will now add your work to the
Drupal repository.

Preparing a project

New module, theme or translation projects should be started in the Drupal CVS contributions
repository.

In the Finder, go to the folder where you saved the CVS contributions working copy, and create
a new folder in the appropriate subfolder. For example, if you are working on a new module,
create new folder in the module folder. Name the new folder to whatever you want to call the
project. Try to make the name short and descriptive. Avoid spaces, use "_" to separate words,
but read the Developer guidelines to understand how underscores in module names may
interact with code behaviour.

In CVL, open the CVS contributions work area, navigate to the folder containing the new folder
you just created, control-click on it and select "Refresh" from the menu that pops up.

The new folder, and any files you put in it, should now show up in CVL with a blue * next to it.

The blue * signifies that the files have not been added to the work area yet.

In CVL select the new folder, control-click on it and select "Mark File(s) for Addition" from the
menu that pops up.

37

Drupal Handbook15 Jan 2006

The blue * will now change to a green + next to each of the new files and folders, signifying that
the files are part of the working copy and can be added to the repository at drupal.org once you
want to commit them.

Committing a project

Once your new module, theme or translation is complete you may want to add it to Drupal’s
contributed repository, and create a project for it at www.drupal.org.

1. Add your project to CVS

Your new project should first be added to the trunk of the contrib repository, which is know
as the ’cvs’ or ’HEAD’ branch. (see Setting up)

Add the files to the ’cvs’ version of the contrib repository (see Preparing a project). Once
added to CVS, the project folder and each of it’s files will have a green ’+’ next to it, this
means they are ready to be commited.

Select the project’s folder, for example:

banana.module
contrib/modules/banana/banana.module
select folder ’banana’

With the project folder selected, control-click, select ’Commit...’

A dialog box will appear into which you can type a log message. The log message should
briefly explain what new features have been added to this version of the files or what bugs
have been fixed.

2. Add your project to the Drupal Project tracker

Your files are now in the contrib repository, now you need to make drupal.org aware of
your new project.

By creating a ’project’ at www.drupal.org the files in CVS become available for download
on the ’Downloads’ page, it also allows users to submit feature requests and bug reports for
the project.

Log in to www.drupal.org, in the side account block click on "create content", then click
"project".

Fill in the project form page to create the new project. The project will apear on drupal.org
in a day or two.

38

15 Jan 2006Drupal Handbook

http://drupal.org/node/2972
http://drupal.org/node/20203

Drupal CVS repositories
Main repository
There are two ways to access the latest Drupal sources in the main CVS repository. If you just
want to have a quick look at some files, use the ViewCVS web interface. If you need the
complete source tree to study and work with the code, follow these steps:

If you don’t have it yet, install a recent copy of CVS. If you are on Windows, you may check
CVS front ends for Windows). Mac OS X users may find the tutorial on the CVL front end
for CVS in section CVL: point and click CVS helpful.
Login by running the command:

$ cvs -d:pserver:anonymous@cvs.drupal.org:/cvs/drupal login

The required password is ’anonymous’ (without the quotes).

To check out the latest drupal sources, run the command:

$ cvs -d:pserver:anonymous@cvs.drupal.org:/cvs/drupal checkout drupal

This will create a directory called drupal containing the latest drupal source tree.

Once you have a copy of the Drupal source tree, use

$ cvs update -dP

in the source root dir to update all files to it’s latest versions (-d: Create any (new)
directories that exist in the repository if they’re missing from the working directory. -P:
Prune empty directories - directories that got removed in the repository will be removed in
your working copy, too).

If you can’t or don’t want to use CVS, you can download nightly CVS snapshots from
http://drupal.org/files/projects/drupal-cvs.tar.gz.

Contributions repository
The Contributions repository is a seperate CVS repository where people can submit their
modules, themes, translations, etc. See the contributions FAQ.txt and README.txt for more
information.

As the Main repository, you can browse it via the web interface. For anonymous (read-only)
access, do the following:

Login by running the command

39

Drupal Handbook15 Jan 2006

http://cvs.drupal.org/viewcvs/drupal/
http://www.cvshome.org/
http://drupal.org/node/view/635
http://drupal.org/node/20202
http://drupal.org/files/projects/drupal-cvs.tar.gz
http://cvs.drupal.org/viewcvs/contributions/FAQ.txt?view=markup
http://cvs.drupal.org/viewcvs/contributions/README.txt?view=markup
http://drupal.org/node/view/320
http://cvs.drupal.org/viewcvs/contributions/

$ cvs -d:pserver:anonymous@cvs.drupal.org:/cvs/drupal-contrib login

The required password is ’anonymous’ (without the quotes).

To check out the latest drupal contributions, run the command:

$ cvs -d:pserver:anonymous@cvs.drupal.org:/cvs/drupal-contrib checkout contributions

To check out contributions for a certain Drupal version, do

$ cvs -d:pserver:anonymous@cvs.drupal.org:/cvs/drupal-contrib checkout
 -r <version tag> contributions

where <version tag> is one of the tags listed under "Q: How do I control the releases of my
module/theme?" here.

To update your tree to the latest version, do

$ cvs update -dP

in the source root dir.

If you want to add your own modules, themes, translations, etc., you need CVS write access:

Promoting a project to be an official release
To promote a project from the HEAD of the CVS tree to an official release state, the author needs
to move the CVS tag.

For instance, to promote the CVS HEAD of the French translation to the official 4.5 release, using
the command line from within inside the contributions/translation/fr, just do:

$ cvs up -dA
$ cvs tag -F DRUPAL-4-5

Adding a file to the CVS repository
If you would like to add a file or a directory, first you need to download the parent directory.
Once again: the parent directory, not the directory you want to add something to, but the parent
of it. I can not find any logic in this, but this is so.

First, issue the following command:

export
CVSROOT=:pserver:icvslogin:cvspasswd@cvs.drupal.org:/cvs/drupal-contrib

To add a new file to a module:

cvs co contributions/modules/modulename
cd contributions/modules

40

15 Jan 2006Drupal Handbook

http://cvs.drupal.org/viewcvs/contributions/FAQ.txt?view=markup

cp sourcefile modulename
cvs add modules/sourcefilename
cvs commit

Say you want to create a sandbox named mysandbox. Then do the following:

cvs co contributions/sandbox/weblinks [1]
cd contributions
mkdir sandbox/mysandbox
cvs add sandbox/mysandbox
cvs commit

[1] does not really matter which directory, just sg. from sandbox. I like this one, because it is small.

Of course, you may do several things in one commit, adding files, removing files, updating files.
Neither remove (cvs remove) nor update (cvs update) is such a tedious process. Warning: you
need to check out with your CVS account, because CVS ignores CVSROOT for existing
checkouts.

Tracking Drupal source with CVS
Note: The following assumes you have both basic knowledge of CVS and your own local
repository set up and working.

If you’ve been modifying the Drupal source code for your own purposes (or developing a
module or theme) and manually applying your changes to the Drupal source every time it
updates, you may be glad to learn that CVS can help make this easier.

This is usually referred to as ’tracking third-party sources’ and requires knowledge of the CVS
concepts branching, release tags, and the vendor tag. We’ll work through an example here and
explain these concepts as we go.

Example
Lets assume we’d like to track current Drupal CVS HEAD, and start by downloading the source.
In this case we’ll export using anonymous CVS (we could also just download a tarball).

Begin by logging in to the anonymous CVS server, the required password is ’anonymous’:

cvs -d:pserver:anonymous@cvs.drupal.org:/cvs/drupal login

Then export the newest development version of drupal using the HEAD release tag:

cvs -d:pserver:anonymous@cvs.drupal.org:/cvs/drupal export -r HEAD drupal

Now that we have a local copy of the drupal source we can import it into our own CVS
repository. In this example we import with a log message including the date ’-m "message
text"’, a module location/name of ’sites/drupal’ (customize that to suit your own CVS
repository), a vendor tag of ’drupal’ and a release tag of ’HEAD20040110’. We also use the -ko

41

Drupal Handbook15 Jan 2006

option to prevent keyword expansion (this preserves the CVS $ Id $ tags used on drupal.org):

cd drupalcvs import -ko -m "Import CVS HEAD on Jan 10th 2004" sites/drupal drupal HEAD20040110

Before we can customize we need to checkout into a working directory. Then we can modify a
file or files and commit:

cvs checkout drupalcd drupal...modify a file or files...cvs commit

We now have a drupal module with a special ’vendor branch’ (identified by the vendor tag),
which contains the drupal source files we imported, and a main trunk with our modified files.
Any files modified at this point are now HEAD on the main trunk of the module, whilst the
unmodified files remain HEAD on the vendor branch (HEAD being what is produced by cvs
update). For an individual file (fileone.php) the version history now looks like something like
this:

 HEAD
 +-----+
[Main trunk] fileone.php *------------+ 1.2 +
 \ +-----+
 +---------+
[Vendor Branch] + 1.1.1.1 +
 +---------+
 (tag:HEAD20040110)

Updating the vendor branch
At some later point the drupal source code will have been updated and we’ll want to add the
updated version to our repository. We do this by repeating the process described above, we get
a fresh copy of the source from drupal.org, and import using the same vendor tag but change
the release tag from ’HEAD20040110’ to reflect the newer version:

cvs import -ko -m "Import CVS HEAD on Jan 11th 2004" sites/drupal drupal HEAD20040111

This updates the vendor branch, a single files revision history can now appear four different
ways, depending on whether it has been modified by us, by the vendor (drupal.org), by both, or
not at all.

If the file was modified only by us, our modified version remains the head revision:

 HEAD
 +-----+
[Main trunk] fileone.php *------------+ 1.2 +
 \ +-----+
 \
 +---------+
[Vendor Branch] + 1.1.1.1 +
 +---------+
 (tag:HEAD20040110)

If the file was modified only by the vendor, the new version becomes the HEAD revision:

42

15 Jan 2006Drupal Handbook

[Main trunk] filetwo.php *
 \
 \ HEAD
 +---------+ +---------+
[Vendor Branch] + 1.1.1.1 +----------+ 1.1.1.2 +
 +---------+ +---------+
 (tag:HEAD20040110) (tag:HEAD20040111)

And if the file was modified by both us and the vendor:

 HEAD
 +-----+
[Main trunk] filethree.php *------------+ 1.2 +
 \ +-----+
 \
 +---------+ +---------+
[Vendor Branch] + 1.1.1.1 +----------+ 1.1.1.2 +
 +---------+ +---------+
 (tag:HEAD20040110) (tag:HEAD20040111)

Our version of filethree.php remains the HEAD revision, but this is clearly not desirable since it
doesn’t carry the latest changes. In fact, during our import of the latest source CVS would have
warned us of conflicts between the two versions of filethree.php, we need to merge the changes
to remove this conflict:

cvs checkout -jHEAD20040110 -jHEAD20040111 drupal

Examine the merged file to ensure the changes CVS made were sane and then ‘cvs commit’ the
changes back to the main trunk. Leaving us with a new revision which becomes HEAD:

 HEAD
 +-----+ +-----+
[Main trunk] filethree.php *------------+ 1.2 +-------+ 1.3 +
 \ +-----+ +-----+
 \
 +---------+ +---------+
[Vendor Branch] + 1.1.1.1 +----------+ 1.1.1.2 +
 +---------+ +---------+
 (tag:HEAD20040110) (tag:HEAD20040111)

Summary
It should now be clear that using the CVS vendor tag to create a vendor branch in your own
drupal module you can track changes to the drupal source code whilst also maintaining and
developing your own customizations and new features for drupal. This example has been kept
very simple for the purposes of explanation, but the basic process can be used to achieve many
different things, some examples:

Track a specific release of Drupal (e.g. 4.3, or 4.2), instead of the development (CVS HEAD)
version.
Maintain your customized sites with modules, themes, static pages, images etc all added to
your CVS repository, whilst still tracking and importing updates to the drupal core.
Branch your module to maintain several customized web sites off a single tracked branch of
the drupal core.

43

Drupal Handbook15 Jan 2006

Reading the following additional resources is highly recommended.

Additional resources
Article by Nick Patavalis: The mechanics and a methodology for tracking 3rd party sources
with CVS
The section ‘‘Tracking third-party sources’’ in the CVS manual
The section ‘‘Tracking third-party sources’’ in a book on CVS

Sandbox maintenance rules
1. Always document your changes.
2. Split different set of patches into different directories. It takes longer to find the set of files

relating to one change if it is mixed in with 2 other patches.
3. Keep the documentation current. Try to keep some track of your reasoning too. If I read in a

README that change X wasn’t a good idea after all it makes the reviewer wonder why.
4. Document the status of your patch. It is important to know if this is an early test, or

considered stable and workable but the author of the patch.
5. All patches should be against the latest CVS version of Drupal, and include in the README

when it was last synced.
6. Don’t use a sandbox for developing modules. There is a different directory structure for

that.
7. If your patch is 4 lines long don’t bother to put it in a sandbox. Just mail it to the devel list

and find out quicker if people like it or not. Small patches are quick to check and find out if
work. Sandboxes should be for more extensive changes.

8. Try to maintain patches in the sandbox. They are so much easier to check than compete
files. If you are using CVS then you can use diff (cvs -H diff)

9. Please make sure your script passes the code-style.pl script. It isn’t perfect, and sometimes a
bit too strict, but it will ensure some level of compliance with the coding standards.

Additional references
CVS book
CVS docs
CVS FAQ
CVS guide from TLDP

44

15 Jan 2006Drupal Handbook

http://drupal.org/node/22735
http://efault.net/npat/docs_and_postings/index.html
http://efault.net/npat/docs_and_postings/cvs-tracking/cvs-tracking.txt
http://efault.net/npat/docs_and_postings/cvs-tracking/cvs-tracking.txt
http://www.cvshome.org/docs/manual/
http://cvsbook.red-bean.com/cvsbook.html#Tracking_Third-Party_Sources__Vendor_Branches_
http://cvsbook.red-bean.com/
http://www.cvshome.org/docs/manual/cvs-1.11.18/cvs_toc.html#SEC_Contents
http://ccvs.cvshome.org/fom/fom.cgi
http://www.tldp.org/REF/CVS-BestPractices/CVS-BestPractices.pdf

Drupal’s APIs
If you are interested in developing Drupal modules or hacking away at the Drupal core then this
is the place to find details about all the functions and classes defined in Drupal.

We now use Doxygen to automatically generate documentation from the latest drupal sources.
This allows us to ensure that documentation is up-to-date, and to simultaneously track multiple
versions of the documentation.

API Documentation is available from drupaldocs.org for:

Drupal CVS HEAD
Drupal 4.5.x
Drupal 4.4.x

Please also read the Drupal Coding Standards page, which contains some guidelines for writing
Doxygen comments.

45

Drupal Handbook15 Jan 2006

http://drupal.org/book/view/320
http://www.drupaldocs.org/
http://drupaldocs.org/api/head
http://drupaldocs.org/api/4.5
http://drupaldocs.org/api/4.4
http://drupal.org/node/318

Module developer’s guide
Developer documentation can be found at http://drupaldocs.org/ and in the remainder of the
Drupal developer’s guide below.

drupaldocs.org documents the Drupal APIs and presents an overview of Drupal’s building
blocks along with handy examples.
The Drupal developer guide provides guidlines as how to upgrade your modules (API
changes) along with development tips/tutorials.

Introduction to Drupal modules
When developing Drupal it became clear that we wanted to have a system which is as modular
as possible. A modular design will provide flexibility, adaptability, and continuity which in turn
allows people to customize the site to their needs and likings.

A Drupal module is simply a file containing a set of routines written in PHP. When used, the
module code executes entirely within the context of the site. Hence it can use all the functions
and access all variables and structures of the main engine. In fact, a module is not any different
from a regular PHP file: it is more of a notion that automatically leads to good design principles
and a good development model. Modularity better suits the open-source development model,
because otherwise you can’t easily have people working in parallel without risk of interference.

The idea is to be able to run random code at given places in the engine. This random code
should then be able to do whatever needed to enhance the functionality. The places where code
can be executed are called "hooks" and are defined by a fixed interface.

In places where hooks are made available, the engine calls each module’s exported functions.
This is done by iterating through the modules directory where all modules must reside. Say
your module is named foo (i.e. modules/foo.module) and if there was a hook called bar, the
engine will call foo_bar() if this was exported by your module.

See also the overview of module hooks, which is generated from the Drupal source code.

Drupal’s menu building mechanism
(Note: this is an analysis of the menu building mechanism in pre-4.5 CVS as of August 2004. It
does not include menu caching.)

46

15 Jan 2006Drupal Handbook

http://drupaldocs.org/
http://drupaldocs.org/api
http://drupaldocs.org/api/head
http://drupaldocs.org/api/head
http://drupaldocs.org/api/head
http://drupaldocs.org/api/head/group/hooks

47

Drupal Handbook15 Jan 2006

This continues our examination of how Drupal serves pages. We are looking specifically at how
the menu system works and is built, from a technical perspective. See the excellent overview in
the menu system documentation.

We begin in index.php, where menu_execute_active_handler() has been called. Diving in from
menu_execute_active_handler(), we immediately set the $menu variable by calling
menu_get_menu(). The latter function declares the global $_menu array (note the underline, it
means a ’super global’, which is a predefined array in PHP lore) and calls _menu_build() to fill
the array, then returns $_menu. Although menu_get_menu() initializes the $_menu array, the
_menu_build() function actually reinitializes the $_menu array. Then it sets up two main arrays
within $_menu: the items array and the path index array.

The items array is an array keyed to integers. Each entry contains the following fields:

Required fields

path string the partial URL to the page for this menu item

title string the title that this menu item will have in the menu

type integer a constant denoting the menu item type (see comments in
menu.inc)

Optional fields

access boolean

pid integer

weight integer

callback string name of the function to be called if this menu item is selected

callback
arguments array

An array called $menu_item_list is populated by sending a ’menu’ callback to all modules with
’menu’ hooks (that is, they have a function called foo_menu() where foo is the name of the
module). So each module has a chance to register its own menu items. It is interesting that when
the node module receives the menu callback through node_menu(), and the path is something
like ’node/1’ as it is in our present case, the complete node is actually loaded via the node_load()
function so it can be examined for permissions. The $node variable into which it was loaded
then goes out of scope, so the node is gone and needs to be rebuilt completely later on. This
seems like a golden opportunity for the node module to cache the node.

The $menu_item_list array is normalized by making sure each array entry has a path, type and
weight entry. As each entry is examined, the path index array of the $_menu array is checked to
see if the path of this menu item exists. If an equivalent path is already there in the path index
array, it is blasted away. The path index of this menu item is then added as a key with the value
being the menu id. In the items array of the $_menu array, the menu id is used as the key and

48

15 Jan 2006Drupal Handbook

http://drupaldocs.org/api/head/group/menu
%20http://www.php.net/manual/en/language.variables.predefined.php

the entire array entry is the value.

Note: the $temp_mid and $mid variables seem to do the same thing. Why, syntactically, cannot
only one be used?

The path index array contained 76 items when serving out a simple node with only the default
modules enabled.

Next the menu table from the database is fetched and its contents are used to move the position
of existing menu items from their current menu ids to the menu ids saved in the database. The
comments says "reassigning menu IDs as needed." This is probably to detect if the user has
customized the menu entries using the menu module. The path index array entries generated
from the database can be recognized because their values are strings, whereas up til now the
values in the path index array have been integers.

Now I get sort of lost. It looks like the code is looking at paths to determine which menu items
are children of other menu items. Then _menu_build_visible_tree is a recursive function that
builds a third subarray inside $_menu, to go along with items and path index. It is called visible
and takes into account the access attribute and whether or not the item is hidden in order to
filter the items array. As an anonymous user, all items but the Navigation menu item are filtered
out. See also the comments in menu.inc for menu_get_menu(). In fact, read all the comments in
menu.inc!

Now the path is parsed out from the q parameter of the URL. Since node/1 is present in the path
index, we successfully found a menu item. It points to menu item -44 in our case, to be precise,
but there must be a bug in the Zend IDE because it shows item -44 as null. Anyway, the menu
item entry is checked for callback arguments (there are none) and for additional parameters (also
none), and execution is passed off to node_page() through the call_user_func_array function.

Drupal’s node building mechanism
(This walkthrough done on pre-4.5 CVS code in August 2004.)

49

Drupal Handbook15 Jan 2006

The node_page controller checks for a $_POST[’op’] entry and, failing that, sets $op to arg(1)
which in this case is the ’1’ in node/1. A numeric $op is set to arg(2) if arg(2) exists, but in this

50

15 Jan 2006Drupal Handbook

case it doesn’t (’1’ is the end of the URL, remember?) so the $op is hardcoded to ’view’. Thus, we
succeed in the ’view’ case of the switch statement, and are shunted over to node_load(). The
function node_load() takes two arguments, $conditions (an array with nid set to desired node id
-- other conditions can be defined to further restrict the upcoming database query) for which we
use arg(1), and $revision, for which we use _GET[’revision’]. The ’revision’ key of the _GET
array is unset so we need to make brief stop at error_handler because of an undefined index
error. That doesn’t stop us, though, and we continue pell-mell into node_load using the default
$revision of -1 (that is, the current revision). The actual query that ends up being run is

SELECT n.*, u.uid, u.name, u.picture, u.data FROM node n INNER JOIN users u on u.uid
WHERE n = ’1’

We get back a joined row from the database as an object. The data field from the users table is
serialized, so it must be unserialized. This data field contains the user’s roles. How does this
relate to the user_roles table? Note that the comment "// Unserialize the revisions and user data
fields" should be moved up before the call to drupal_unpack().

We now have a complete node that looks like the following:

51

Drupal Handbook15 Jan 2006

Attribute Value

body This is a test node body

changed 1089859653

comment 2

created 1089857673

data a:1:{s:5... (serialized data)

moderate 0

name admin

nid 1

picture ’’

promote 1

revisions ’’

roles array containing one key-value pair, 0 = ’2’

score 0

status 1

sticky 0

teaser This is a test node body

title Test

type page

uid 1

users ’’

votes 0

All of the above are strings except the roles array.

So now we have a node loaded from the database. It’s time to notify the appropriate module that
this has happened. We do this via the node_invoke($node, ’load’) call. The module called via
this callback may return an array of key-value pairs, which will be added to the node above.

The node_invoke() function asks node_get_module_name() to determine the name of the
module that corresponds with the node’s type. In this case, the node type is a page, so the
page.module is the one we’ll call, and the specific name of the function we’ll call is page_load().
If the name of the node type has a hyphen in it, the left part is used. E.g., if the node type is

52

15 Jan 2006Drupal Handbook

page-foo, the page module is used.

The page_load() function turns out to be really simple. It just retrieves the format, link and
description columns from the page table. The ’format’ column specifies whether we’re dealing
with a HTML or PHP page. The ’link’ and ’description’ fields are used to generate a link to the
newly created page, however, those will be deprecated with the improved menu system. To that
extend, the core themes no longer use this information (unlike some older themes in the
contributions repository). We return to node_load(), where the format, link and description
key-value pairs are added to the node’s definition.

Now it’s time to call the node_invoke_nodeapi() function to allow other modules to do their
thing. We check each module for a function that begins with the module’s name and ends with
_nodeapi(). We hit paydirt with the comment module, which has a function called
comment_nodeapi(&$node, $op, arg = 0). Note that the node is passed in by reference so that
any changes made by the module will be reflected in the actual node object we built. The $op
argument is ’load’, in this case. However, this doesn’t match any of comment_nodeapi()’s
symbols in its controller (’settings’, ’fields’, ’form admin’, ’validate’ and ’delete’ match). So
nothing happens.

Our second hit is node_nodeapi(&$node, $op, $arg = 0) in the node.module itself. Again, no
symbols are matched in the controller so we just return.

We’ll try again with taxonomy_nodeapi(&$node, $op, $arg = 0). Again, no symbols match; the
taxonomy module is concerned only with inserts, updates and deletes, not loads.

Note that any of these modules could have done anything to the node if they had wished.

Next, the node is replaced with the appropriate revision of the node, if present as an attribute of
$node. It is odd that this occurs here, as all the work that may have been done by modules is
summarily blown away if a revision other than the default revision is found.

Finally, back in node_page(), we’re ready to get down to business and actually produce some
output. This is done with the statement

print theme(’page’, node_show($node, arg(3)), $node->title);

And what that statement calls is complex enough to again warrant another commentary. (Not
yet done.)

How Drupal handles access
I believe this page should explain how user_access table works.
1.- Drupal checks if the user has access to that module, if he does ...
2.- The he checks the user _access page where gid is the role, view should be 1 and realm should
be "all". If there is no access given in that table, he will not give the access to the user.

53

Drupal Handbook15 Jan 2006

I believe there is not enough documentation on how to use node access, and hopefully this page
will have more information as people contribute.

Drupal’s page serving mechanism
This is a commentary on the process Drupal goes through when serving a page. For
convenience, we will choose the following URL, which asks Drupal to display the first node for
us. (A node is a thing, usually a web page.)

http://127.0.0.1/~vandyk/drupal/?q=node/1

A visual companion to this narration can be found here; you may want to print it out and follow
along. Before we start, let’s dissect the URL. I’m running on an OS X machine, so the site I’m
serving lives at /Users/vandyk/Sites/. The drupal directory contains a checkout of the latest
Drupal CVS tree. It looks like this:

CHANGELOG.txt
cron.php
CVS/
database/
favicon.ico
includes/
index.php
INSTALL.txt
LICENSE.txt
MAINTAINERS.txt
misc/
modules/
phpinfo.php
scripts/
themes/
tiptoe.txt
update.php
xmlrpc.php

So the URL above will be be requesting the root directory / of the Drupal site. Apache translates
that into index.php. One variable/value pair is passed along with the request: the variable ’q’
is set to the value ’node/1’.

So, let’s pick up the show with the execution of index.php, which looks very simple and is only a
few lines long.

Let’s take a broad look at what happens during the execution of index.php. First, the
includes/bootstrap.inc file is included, bringing in all the functions that are necessary to
get Drupal’s machinery up and running. There’s a call to drupal_page_header(), which
starts a timer, sets up caching, and notifies interested modules that the request is beginning.
Next, the includes/common.inc file is included, giving access to a wide variety of utility

54

15 Jan 2006Drupal Handbook

http://www.drupal.org/
http://drupal.org/book/view/320
http://drupaldocs.org/api/head/file/index.php

functions such as path formatting functions, form generation and validation, etc. The call to
fix_gpc_magic() is there to check on the status of PHP "magic quotes" and to ensure that all
escaped quotes enter Drupal’s database consistently. Drupal then builds its navigation menu
and sets the variable $status to the result of that operation. In the switch statement, Drupal
checks for cases in which a Not Found or Access Denied message needs to be generated, and
finally a call to drupal_page_footer(), which notifies all interested modules that the request
is ending. Drupal closes up shop and the page is served. Simple, eh?

Let’s delve a little more deeply into the process outlined above.

The first line of index.php includes the includes/bootstrap.inc file, but it also executes
code towards the end of bootstrap.inc. First, it destroys any previous variable named
$conf. Next, it calls conf_init(). This function allows Drupal to use site-specific
configuration files, if it finds them. The name of the site-specific configuration file is based on the
hostname of the server, as reported by PHP. conf_init returns the name of the site-specific
configuration file; if no site-specific configuration file is found, sets the variable $config equal
to the string $confdir/default. Next, it includes the named configuration file. Thus, in the
default case it will include sites/default/settings.php. The code in conf_init()
would be easier to understand if the variable $file were instead called
$potential_filename. Likewise $conf_filename would be a better choice than $config.

The selected configuration file (normally /sites/default/settings.php) is now parsed,
setting the $db_url variable, the optional $db_prefix variable, the $base_url for the
website, and the $languages array (default is "en"=>"english").

The database.inc file is now parsed, with the primary goal of initializing a connection to the
database. If MySQL is being used, the database.mysql.inc files is brought in. Although the
global variables $db_prefix, $db_type, and $db_url are set, the most useful result of
parsing database.inc is a global variable called $active_db which contains the database
connection handle.

Now that the database connection is set up, it’s time to start a session by including the
includes/session.inc file. Oddly, in this include file the executable code is located at the
top of the file instead of the bottom. What the code does is to tell PHP to use Drupal’s own
session storage functions (located in this file) instead of the default PHP session code. A call to
PHP’s session_start() function thus calls Drupal’s sess_open() and sess_read()
functions. The sess_read() function creates a global $user object and sets the
$user->roles array appropriately. Since I am running as an anonymous user, the
$user->roles array contains one entry, 1->"anonymous user".

We have a database connection, a session has been set up...now it’s time to get things set up for
modules. The includes/module.inc file is included but no actual code is executed.

The last thing bootstrap.inc does is to set up the global variable $conf, an array of
configuration options. It does this by calling the variable_init() function. If a per-site
configuration file exists and has already populated the $conf variable, this populated array is
passed in to variable_init(). Otherwise, the $conf variable is null and an empty array is
passed in. In both cases, a populated array of name-value pairs is returned and assigned to the

55

Drupal Handbook15 Jan 2006

global $conf variable, where it will live for the duration of this request. It should be noted that
name-value pairs in the per-site configuration file have precedence over name-value pairs
retrieved from the "variable" table by variable_init().

We’re done with bootstrap.inc! Now it’s time to go back to index.php and call
drupal_page_header(). This function has two responsibilities. First, it starts a timer if
$conf[’dev_timer’] is set; that is, if you are keeping track of page execution times. Second,
if caching has been enabled it retrieves the cached page, calls module_invoke_all() for the
’init’ and ’exit’ hooks, and exits. If caching is not enabled or the page is not being served to an
anonymous user (or several other special cases, like when feedback needs to be sent to a user), it
simply exits and returns control to index.php.

Back at index.php, we find an include statement for common.inc. This file is chock-full of
miscellaneous utility goodness, all kept in one file for performance reasons. But in addition to
putting all these utility functions into our namespace, common.inc includes some files on its
own. They include theme.inc, for theme support; pager.inc for paging through large
datasets (it has nothing to do with calling your pager); and menu.inc. In menu.inc, many
constants are defined that are used later by the menu system.

The next inclusion that common.inc makes is xmlrpc.inc, with all sorts of functions for
dealing with XML-RPC calls. Although one would expect a quick check of whether or not this
request is actually an XML-RPC call, no such check is done here. Instead, over 30 variable
assignments are made, apparently so that if this request turns to actually be an XML-RPC call,
they will be ready. An xmlrpc_init() function instead may help performance here?

A small tablesort.inc file is included as well, containing functions that help behind the
scenes with sortable tables. Given the paucity of code here, a performance boost could be gained
by moving these into common.inc itself.

The last include done by common.inc is file.inc, which contains common file handling
functions. The constants FILE_DOWNLOADS_PUBLIC = 1 and FILE_DOWNLOADS_PRIVATE =
2 are set here, as well as the FILE_SEPARATOR, which is \\ for Windows machines and / for all
others.

Finally, with includes finished, common.inc sets PHP’s error handler to the error_handler()
function in the common.inc file. This error handler creates a watchdog entry to record the error
and, if any error reporting is enabled via the error_reporting directive in PHP’s
configuration file (php.ini<code>), it prints the error message to the
screen. Drupal’s <code>error_handler() does not use the last parameter
$variables, which is an array that points to the active symbol table at the point the error
occurred. The comment "// set error handler:" at the end of common.inc is redundant,
as it is readily apparent what the function call to set_error_handler() does.

The Content-Type header is now sent to the browser as a hard coded string:
"Content-Type: text/html; charset=utf-8".

56

15 Jan 2006Drupal Handbook

If you remember that the URL we are serving ends with /~vandyk/drupal/?q=node/1,
you’ll note that the variable q has been set. Drupal now parses this out and checks for any path
aliasing for the value of q. If the value of q is a path alias, Drupal replaces the value of q with the
actual path that the value of q is aliased to. This sleight-of-hand happens before any modules see
the value of q. Cool.

Module initialization now happens via the module_init()<code> function. This
function runs <code>require_once()<code> on the <code>admin, filter,
system, user and watchdog modules. The filter module defines FILTER_HTML* and
FILTER_STYLE* constants while being included. Next, other modules are include_once’d
via module_list(). In order to be loaded, a module must (1) be enabled (that is, the status
column of the "system" database table must be set to 1), and (2) Drupal’s throttle mechanism
must determine whether or not the module is eligible for exclusion when load is high. First, it
determines whether the module is eligible by looking at the throttle column of the "system"
database table; then, if the module is eligible, it looks at $conf["throttle_level"] to see
whether the load is high enough to exclude the module. Once all modules have been
include_once’d and their names added to the $list local array, the array is sorted by
module name and returned. The returned $list is discarded because the module_list()
invocation is not part of an assignment (e.g., it is simply module_list() and not
$module_list = module_list()). The strategy here is to keep the module list inside a
static variable called $list inside the module_list() function. The next time
module_list() is called, it will simply return its static variable $list rather than rebuilding
the whole array. We see that as we follow the final objective of module_init(); that is, to send
all modules the "init" callback.

To see how the callbacks work let’s step through the init callback for the first module. First
module_invoke_all() is called and passed the string enumerating which callback is to be
called. This string could be anything; it is simply a symbol that call modules have agreed to
abide by, by convention. In this case it is the string "init".

The module_invoke_all() function now steps through the list of modules it got from calling
module_list(). The first one is "admin", so it calls module_invoke("admin","init").
The module_invoke() function simply puts the two together to get the name of the function it
will call. In this case the name of the function to call is "admin_init()". If a function by this
name exists, the function is called and the returned result, if any, ends up in an array called
$return which is returned after all modules have been invoked. The lesson learned here is that
if you are writing a module and intend to return a value from a callback, you must return it as
an array. [Jonathan Chaffer: Each "hook" (our word for what you call a callback) defines its own return
type. See the full list of hooks available to module developers, with documentation about what they are
expected to return.]

Back to common.inc. There is a check for suspicious input data. To find out whether or not the
user has permission to bypass this check, user_access() is called. This retrieves the user’s
permissions and stashes them in a static variable called $perm. Whether or not a user has
permission for a given action is determined by a simple substring search for the name of the
permission (e.g., "bypass input data check") within the $perm string. Our $perm string, as an
anonymous user, is currently "0access content, ". Why the 0 at the beginning of the string?

57

Drupal Handbook15 Jan 2006

http://drupaldocs.org/api/head/group/hooks

Because $perm is initialized to 0 by user_access().

The actual check for suspicious input data is carried out by valid_input_data() which lives
in common.inc. It simply goes through an array it’s been handed (in this case the $_REQUEST
array) and checks all keys and values for the following "evil" strings: javascript, expression, alert,
dynsrc, datasrc, data, lowsrc, applet, script, object, style, embed, form, blink, meta, html, frame,
iframe, layer, ilayer, head, frameset, xml. If any of these are matched watchdog records a
warning and Drupal dies (in the PHP sense). I wondered why both the keys and values of the
$_REQUEST array are examined. This seems very time-consuming. Also, would it die if my URL
ended with "/?xml=true" or "/?format=xml"?

The next step in common.inc’s executable code is a call to locale_init() to set up locale
data. If the user is not an anonymous user and has a language preference set up, the
two-character language key is returned; otherwise, the key of the single-entry global array
$language is returned. In our case, that’s "en".

The last gasp of common.inc is to call init_theme(). You’d think that for consistency this
would be called theme_init() (of course, that would be a namespace clash with a callback of
the same name). This finds out which themes are available, which the user has selected, and then
include_once’s the chosen theme. If the user’s selected theme is not available, the value at
$conf["theme_default"] is used. In our case, we are an anonymous user with no theme
selected, so the default xtemplate theme is used. Thus, the file
themes/xtemplate/xtemplate.theme is include_once’d. The inclusion of
xtemplate.theme calls include_once("themes/xtemplate/xtemplate.inc"), and
creates a new object called xtemplate as a global variable. Inside this object is an xtemplate object
called "template" with lots of attributes. Then there is a nonfunctional line where
SetNullBlock is called. A comment indicates that someone is aware that this doesn’t work.

Now we’re back to index.php! A call to fix_gpc_magic() is in order. The "gpc" stands for
Get, Post, Cookie: the three places that unescaped quotes may be found. If deemed necessary by
the status of the boolean magic_quotes_gpc directive in PHP’s configuration file (php.ini),
slashes will be stripped from $_GET, $_POST, $_COOKIE, and $_REQUEST arrays. It seems odd
that the function is not called fix_gpc_magic_quotes, since it is the "magic quotes" that are
being fixed, not the magic. In my distribution of PHP, the magic_quotes_gpc directive is set
to "Off", so slashes do not need to be stripped.

The next step is to set up menus. This step is crucial. The menu system doesn’t just handle
displaying menus to the user, but also determines what function will be handed the
responsibility of displaying the page. The "q" variable (we usually call the Drupal path) is
matched against the available menu items to find the appropriate callback to use. Much more
information on this topic is available in the menu system documentation for developers. We
jump to menu_execute_active_handler() in menu.inc. This sets up a $_menu array
consisting of items, local tasks, path index, and visible arrays. Then the system realizes that
we’re not going to be building any menus for an anonymous user and bows out. The real meat
of the node creation and formatting happens here, but is complex enough for a separate
commentary. Back in index.php, the switch statement doesn’t match either case and we
approach the last call in the file, to drupal_page_footer in common.inc. This takes care of

58

15 Jan 2006Drupal Handbook

http://drupaldocs.org/api/head/group/menu

caching the page we’ve built if caching is enabled (it’s not) and calls module_invoke_all()
with the "exit" callback symbol.

Although you may think we’re done, PHP’s session handler still needs to tidy up. It calls
sess_write() in session.inc to update the session database table, then sess_close()
which simply returns 1.

We’re done.

59

Drupal Handbook15 Jan 2006

60

15 Jan 2006Drupal Handbook

Creating modules - a tutorial
This tutorial describes how to create a module for Drupal 4.5.*. It is an update to the tutorial for
Drupal 4.3. Please see comments there, also.

A module is a collection of functions that link into Drupal, providing additional functionality to
your Drupal installation. After reading this tutorial, you will be able to create a basic block
module and use it as a template for more advanced modules and node modules.

This tutorial will not necessarily prepare you to write modules for release into the wild. It does
not cover caching, nor does it elaborate on permissions or security issues. Use this tutorial as a
starting point, and review other modules and the Drupal handbook and Coding standardsfor
more information.

This tutorial assumes the following about you:

Basic PHP knowledge, including syntax and the concept of PHP objects
Basic understanding of database tables, fields, records and SQL statements
A working Drupal installation
Drupal administration access
Webserver access

This tutorial does not assume you have any knowledge about the inner workings of a Drupal
module. This tutorial will not help you write modules for versions of Drupal earlier than 4.5.

Getting started
To focus this tutorial, we’ll start by creating a block module that lists links to content such as
blog entries or forum discussions that were created one week ago. The full tutorial will teach us
how to create block content, write links, and retrieve information from Drupal nodes.

Start your module by creating a PHP file and save it as ’onthisdate.module’ in the modules
directory of your Drupal installation.

<?php
?>

As per the Coding standards, use the longhand <?php tag, and not <? to enclose your PHP code.

All functions in your module are named {modulename}_{hook}, where "hook" is a well defined
function name. Drupal will call these functions to get specific data, so having these well defined
names means Drupal knows where to look.

61

Drupal Handbook15 Jan 2006

http://drupal.org/node/4721
http://drupal.org/handbook
http://drupal.org/node/318
http://drupal.org/node/318

Letting Drupal know about the new function
As mentioned above, the function we just wrote isn’t a ’hook’: it’s not a Drupal recognized
name. We need to tell Drupal how to access the function when displaying a page. We do this
with the menu() hook. The menu() hook defines the association between a URL and the function
that creates the content for that url. The hook also does permission checking, if desired.

<?php
function onthisdate_menu() {
 $items = array();
 $items[] = array(’path’ => ’onthisdate’,
 ’title’ => t(’on this date’),
 ’callback’ => ’_onthisdate_all’,
 ’access’ => user_access(’access
content’),
 ’type’ => MENU_CALLBACK);
 return $items;
}
?>

Basically, we’re saying if the user goes to "onthisdate" (either via ?q=onthisdate or
http://.../onthisdate), the content generated by onthisdate_all will be displayed. The title of the
page will be "on this date". The type MENU_CALLBACK Drupal to not display the link in the
user’s menu, just use this function when the URL is accessed. Use MENU_LOCAL_TASK if you
want the user to see the link in the side navigation block.

Navigate to /onthisdate (or ?q=onthisdate) and see what you get.

Telling Drupal about your module
The first function we’ll write will tell Drupal information about your module: its name and
description. The hook name for this function is ’help’, so start with the onthisdate_help function:

<?php
function onthisdate_help($section=’’) {
}
?>

The $section variable provides context for the help: where in Drupal or the module are we
looking for help. The recommended way to process this variable is with a switch statement.
You’ll see this code pattern in other modules.

<?php
/**
* Display help and module information
* @param section which section of the site we’re displaying help
* @return help text for section

62

15 Jan 2006Drupal Handbook

http://.../onthisdate

*/
function onthisdate_help($section=’’) {
 $output = ’’;
 switch ($section) {
 case "admin/modules#description":
 $output = t("Displays links to nodes created on this date");
 break;
 }
 return $output;
} // function onthisdate_help
?>

You will eventually want to add other cases to this switch statement to provide real help
messages to the user. In particular, output for "admin/help#onthisdate" will display on the main
help page accessed by the admin/help URL for this module (/admin/help or ?q=admin/help).

Telling Drupal who can use your module
The next function to write is the permissions function. The permissions function doesn’t grant
permission, it just specifies what permissions are available for this module. Access based on
these permissions is defined later in the {module}_access function below. At this point, we’ll
give permission to anyone who can access site content or administrate the module:

<?php
/**
* Valid permissions for this module
* @return array An array of valid permissions for the onthisdate module
*/
function onthisdate_perm() {
 return array(’access content’);
} // function onthisdate_perm()
?>

Conversely, if you are going to write a module that needs to have finer control over the
permissions, and you’re going to do permission control, you should expand this permission set.
You can do this by adding strings to the array that is returned. For example:

<?php
function onthisdate_perm() {
return array(’access content’, ’access onthisdate’, ’administer
onthisdate’);
} // function onthisdate_perm
?>

For this tutorial, start with the first one. We’ll later move to the second version.

63

Drupal Handbook15 Jan 2006

You’ll need to adjust who has permission to view your module on the administer Â» accounts
Â» permissions page. We’ll use the user_access function to check access permissions later (whoa,
so many "laters!").

Your permission strings must be unique within your module. If they are not, the permissions
page will list the same permission multiple times. They should also contain your module name,
to avoid name space conflicts with other modules.

Announce we have block content
There are several types of modules: block modules and node modules are two. Block modules
create abbreviated content that is typically (but not always, and not required to be) displayed
along the left or right side of a page. Node modules generate full page content (such as blog,
forum, or book pages).

We’ll create a block content to start, and later discuss node content. A module can generate
content for blocks and also for a full page (the blogs module is a good example of this). The hook
for a block module is appropriately called "block", so let’s start our next function:

<?php
/**
* Generate HTML for the onthisdate block
* @param op the operation from the URL
* @param delta offset
* @returns block HTML
*/
function onthisdate_block($op=’list’, $delta=0) {
} // end function onthisdate_block
?>

The block function takes two parameters: the operation and the offset, or delta. We’ll just worry
about the operation at this point. In particular, we care about the specific case where the block is
being listed in the blocks page. In all other situations, we’ll display the block content.

When the module will be listed on the blocks page, the $op parameter’s value will be ’list’:

<?php
/**
* Generate HTML for the onthisdate block
* @param op the operation from the URL
* @param delta offset
* @returns block HTML
*/
function onthisdate_block($op=’list’, $delta=0) {
 // listing of blocks, such as on the admin/block page
 if ($op == "list") {
 $block[0]["info"] = t(’On This Date’);

64

15 Jan 2006Drupal Handbook

 return $block;
 } else {
 // our block content
 }
} // end onthisdate_block
?>

Generate content for a block
Now, we need to generate the ’onthisdate’ content for the block. Here we’ll demonstrate a basic
way to access the database.

Our goal is to get a list of content (stored as "nodes" in the database) created a week ago.
Specifically, we want the content created between midnight and 11:59pm on the day one week
ago. When a node is first created, the time of creation is stored in the database. We’ll use this
database field to find our data.

First, we need to calculate the time (in seconds since epoch start, see
http://www.php.net/manual/en/function.time.php for more information on time format) for
midnight a week ago, and 11:59pm a week ago. This part of the code is Drupal independent, see
the PHP website (http://php.net/) for more details.

<?php
/**
* Generate HTML for the onthisdate block
* @param op the operation from the URL
* @param delta offset
* @returns block HTML
*/
function onthisdate_block($op=’list’, $delta=0) {
 // listing of blocks, such as on the admin/block page
 if ($op == "list") {
 $block[0]["info"] = t(’On This Date’);
 return $block;
 } else {
 // our block content
 // Get today’s date
 $today = getdate();
 // calculate midnight one week ago
 $start_time = mktime(0, 0, 0,
 $today[’mon’], ($today[’mday’] - 7),
$today[’year’]);
 // we want items that occur only on the day in question, so
 // calculate 1 day
 $end_time = $start_time + 86400;
 // 60 * 60 * 24 = 86400 seconds in a day
 ...

65

Drupal Handbook15 Jan 2006

http://www.php.net/manual/en/function.time.php
http://php.net/

 }
}
?>

The next step is the SQL statement that will retrieve the content we’d like to display from the
database. We’re selecting content from the node table, which is the central table for Drupal
content. We’ll get all sorts of content type with this query: blog entries, forum posts, etc. For this
tutorial, this is okay. For a real module, you would adjust the SQL statement to select specific
types of content (by adding the ’type’ column and a WHERE clause checking the ’type’ column).

Note: the table name is enclosed in curly braces: {node}. This is necessary so that your module
will support database table name prefixes. You can find more information on the Drupal website
by reading the Table Prefix (and sharing tables across instances) page in the Drupal handbook.

<?php
$query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’";
?>

Drupal uses database helper functions to perform database queries. This means that, for the
most part, you can write your database SQL statement and not worry about the backend
connections.

We’ll use db_query() to get the records (i.e. the database rows) that match our SQL query, and
db_fetch_object() to look at the individual records:

<?php
 // get the links
 $queryResult = db_query($query);
 // content variable that will be returned for display
 $block_content = ’’;
 while ($links = db_fetch_object($queryResult)) {
 $block_content .= ’nid) . ’">’ .
 $links->title . ’
’;
 }
 // check to see if there was any content before setting up
 // the block
 if ($block_content == ’’) {
 /* No content from a week ago. If we return nothing, the block
 * doesn’t show, which is what we want. */
 return;
 }
 // set up the block
 $block[’subject’] = ’On This Date’;
 $block[’content’] = $block_content;
 return $block;
}

66

15 Jan 2006Drupal Handbook

http://drupal.org/node/2622

?>

Notice the actual URL is enclosed in the l() function. l generates links, adjust the
URL to the installation’s URL configuration of either clean URLS: http://(sitename)/node/2 or
http://(sitename)/?q=node/2

Also, we return an array that has ’subject’ and ’content’ elements. This is what Drupal expects
from a block function. If you do not include both of these, the block will not render properly.

You may also notice the bad coding practice of combining content with layout. If you are writing
a module for others to use, you will want to provide an easy way for others (in particular,
non-programmers) to adjust the content’s layout. An easy way to do this is to include a class
attribute in your link, or surround the HTML with a <div> tag with a module specific CSS class
and not necessarily include the
 at the end of the link. Let’s ignore this for now, but be
aware of this issue when writing modules that others will use.

Putting it all together, our block function at this point looks like this:

<?php
function onthisdate_block($op=’list’, $delta=0) {
 // listing of blocks, such as on the admin/block page
 if ($op == "list") {
 $block[0]["info"] = t("On This Date");
 return $block;
 } else {
 // our block content
 // content variable that will be returned for display
 $block_content = ’’;
 // Get today’s date
 $today = getdate();
 // calculate midnight one week ago
 $start_time = mktime(0, 0, 0,$today[’mon’],
 ($today[’mday’] - 7), $today[’year’]);
 // we want items that occur only on the day in question, so
 //calculate 1 day
 $end_time = $start_time + 86400;
 // 60 * 60 * 24 = 86400 seconds in a day
 $query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’";
 // get the links
 $queryResult = db_query($query);
 while ($links = db_fetch_object($queryResult)) {
 $block_content .= ’nid).’">’.
 $links->title . ’
’;
 }
 // check to see if there was any content before setting up the

67

Drupal Handbook15 Jan 2006

http://drupal.org/node/2
http://drupal.org/?q=node/2

block
 if ($block_content == ’’) {
 // no content from a week ago, return nothing.
 return;
 }
 // set up the block
 $block[’subject’] = ’On This Date’;
 $block[’content’] = $block_content;
 return $block;
 }
}
?>

Installing, enabling and testing the module
At this point, you can install your module and it’ll work. Let’s do that, and see where we need to
improve the module.

To install the module, you’ll need to copy your onthisdate.module file to the modules directory
of your Drupal installation. The file must be installed in this directory or a subdirectory of the
modules directory, and must have the .module name extension.

Log in as your site administrator, and navigate to the modules administration page to get an
alphabetical list of modules. In the menus: administer Â» modules, or via URL:

http://.../admin/modules or
http://.../?q=admin/modules

When you scroll down, you’ll see the onthisdate module listed with the description next to it.

Enable the module by selecting the checkbox and save your configuration.

Because the module is a blocks module, we’ll need to also enable it in the blocks administration
menu and specify a location for it to display. Node modules may or may not need further
configuration depending on the module. Any module can have settings, which affect the
functionality/display of a module. We’ll discuss settings later. For now, navigate to the blocks
administration page: admin/block or administer Â» blocks in the menus.

Enable the module by selecting the enabled checkbox for the ’On This Date’ block and save your
blocks. Be sure to adjust the location (left/right) if you are using a theme that limits where
blocks are displayed.

Now, head to another page, say, select the modules menu. In some themes, the blocks are
displayed after the page has rendered the content, and you won’t see the change until you go to
new page.

68

15 Jan 2006Drupal Handbook

If you have content that was created a week ago, the block will display with links to the content.
If you don’t have content, you’ll need to fake some data. You can do this by creating a blog,
forum topic or book page, and adjust the "Authored on:" date to be a week ago.

Alternately, if your site has been around for a while, you may have a lot of content created on
the day one week ago, and you’ll see a large number of links in the block.

Create a module configuration (settings) page
Now that we have a working module, we’d like to make it better. If we have a site that has been
around for a while, content from a week ago might not be as interesting as content from a year
ago. Similarly, if we have a busy site, we might not want to display all the links to content
created last week. So, let’s create a configuration page for the administrator to adjust this
information.

A module’s configuration is set up with the ’settings’ hook. We would like only administrators
to be able to access this page, so we’ll do our first permissions check of the module here:

<?php
/**
* Module configuration settings
* @return settings HTML or deny access
*/
function onthisdate_settings() {
 // only administrators can access this module
 if (!user_access("admin onthisdate")) {
 return message_access();
 }
}
?>

If you want to tie your modules permissions to the permissions of another module, you can use
that module’s permission string. The "access content" permission is a good one to check if the
user can view the content on your site:

<?php
 ...
 // check the user has content access
 if (!user_access("access content")) {
 return message_access();
 }
 ...
?>

We’d like to configure how many links display in the block, so we’ll create a form for the
administrator to set the number of links:

69

Drupal Handbook15 Jan 2006

<?php
function onthisdate_settings() {
 // only administrators can access this module
 if (!user_access("admin onthisdate")) {
 return message_access();
 }
 $output .= form_textfield(t("Maximum number of links"),
"onthisdate_maxdisp",
 variable_get("onthisdate_maxdisp", "3"), 2, 2,
 t("The maximum number of links to display in the
block.")); return $output;}
?>

This function uses several powerful Drupal form handling features. We don’t need to worry
about creating an HTML text field or the form, as Drupal will do so for us. We use
variable_get to retrieve the value of the system configuration variable "onthisdate_maxdisp",
which has a default value of 3. We use the form_textfield function to create the form and a text
box of size 2, accepting a maximum length of 2 characters. We also use the translate function of
t(). There are other form functions that will automatically create the HTML form elements for
use. For now, we’ll just use the form_textfield function.

Of course, we’ll need to use the configuration value in our SQL SELECT, so we’ll need to adjust
our query statement in the onthisdate_block function:

<?php
 $limitnum = variable_get("onthisdate_maxdisp", 3);
 $query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’ LIMIT " . $limitnum;
?>

You can test the settings page by editing the number of links displayed and noticing the block
content adjusts accordingly.

Navigate to the settings page: admin/modules/onthisdate or
administer Â» configuration Â» modules Â» onthisdate. Adjust the number of links and save the
configuration. Notice the number of links in the block adjusts accordingly.

Note:We don’t have any validation with this input. If you enter "c" in the maximum number of
links, you’ll break the block.

Adding menu links and creating page content
So far we have our working block and a settings page. The block displays a maximum number
of links. However, there may be more links than the maximum we show. So, let’s create a page
that lists all the content that was created a week ago.

70

15 Jan 2006Drupal Handbook

<?php
function onthisdate_all() {}
?>

We’re going to use much of the code from the block function. We’ll write this
ExtremeProgramming style, and duplicate the code. If we need to use it in a third place, we’ll
refactor it into a separate function. For now, copy the code to the new function _onthisdate_all().
Contrary to all our other functions, ’all’, in this case, is not a Drupal hook. In our code, we can
prefix this function with an underscore to help us remember this isn’t a hook call. We’ll discuss
below.

<?php
function _onthisdate_all() {
 // content variable that will be returned for display
 $page_content = ’’;
 // Get today’s date
 $today = getdate();
 // calculate midnight one week ago
 $start_time = mktime(0, 0, 0,
 $today[’mon’], ($today[’mday’] - 7),
$today[’year’]);
 // we want items that occur only on the day in question,
 // so calculate 1 day
 $end_time = $start_time + 86400;
 // 60 * 60 * 24 = 86400 seconds in a day
 // NOTE! No LIMIT clause here! We want to show all the code
 $query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’";
 // get the links
 $queryResult = db_query($query);
 while ($links = db_fetch_object($queryResult)) {
 $page_content .= ’nid).’">’.
 $links->title . ’
’;
 }
 ...
}
?>

We have the page content at this point, but we want to do a little more with it than just return it.
When creating pages, we need to send the page content to the theme for proper rendering. We
use this with the theme() function. Themes control the look of a site. As noted above, we’re
including layout in the code. This is bad, and should be avoided. It is, however, the topic of
another tutorial, so for now, we’ll include the formatting in our content:

<?php
print theme("page", $content_string);

71

Drupal Handbook15 Jan 2006

?>

The rest of our function checks to see if there is content and lets the user know. This is preferable
to showing an empty or blank page, which may confuse the user.

Note that we are responsible for outputting the page content with the ’print theme()’ syntax.

<?php
function _onthisdate_all() {
 ...
 // check to see if there was any content before
 // setting up the block
 if ($page_content == ’’) {
 // no content from a week ago, let the user know
 print theme("page",
 "No events occurred on this site on this date in
history.");
 return;
 }
 print theme("page", $page_content);
}
?>

Adding a ’more’ link and showing all entries
Because we have our function that creates a page with all the content created a week ago, we can
link to it from the block with a "more" link.

Add these lines just before that $block[’subject’] line, adding this to the $block_content variable
before saving it to the $block[’content’] variable:

<?php
// add a more link to our page that displays all the links
 $block_content .=
 "<div class=\"more-link\">".
 l(t("more"), "onthisdate", array("title" => t("More events on
this day.")))
 ."</div>";
?>

This will add the more link.

72

15 Jan 2006Drupal Handbook

Conclusion
We now have a working module. It created a block and a page. You should now have enough to
get started writing your own modules. We recommend you start with a block module of your
own and move onto a node module. Alternately, you can write a filter or theme.

As is, this tutorial’s module isn’t very useful. However, with a few enhancements, it can be
entertaining. Try modifying the select query statement to select only nodes of type ’blog’ and see
what you get. Alternately, you could get only a particular user’s content for a specific week.
Instead of using the block function, consider expanding the menu and page functions, adding
menus to specific entries or dates, or using the menu callback arguments to adjust what year you
look at the content from.

If you start writing modules for others to use, you’ll want to provide more details in your code.
Comments in the code are incredibly valuable for other developers and users in understanding
what’s going on in your module. You’ll also want to expand the help function, providing better
help for the user. Follow the Drupal [Coding standards], especially if you’re going to add your
module to the project.

Two topics very important in module development are writing themeable pages and writing
translatable content. Please check the Drupal Handbook for more details on these two subjects.

Updating your modules
As Drupal develops with each release it becomes necessary to update modules to take
advantage of new features and stay functional with Drupal’s API.

Converting 3.0 modules to 4.0
Converting modules from version 3.0 to version 4.0 standards requires rewriting the form()
function, as follows:

Drupal 3.0:

function form($action, $form, $method = "post", $options = 0)

// Example

global $REQUEST_URI;
$form = form_hidden("nid", $nid);
print form($REQUEST_URI, $form);

Drupal 4.0:

function form($form, $method = "post", $action = 0, $options = 0)

// Example

$form = form_hidden("nid", $nid);
print form($form);

73

Drupal Handbook15 Jan 2006

http://drupal.org/handbook

Converting 4.0 modules to 4.1
Drupal 4.1 changed the block hook function and taxonomy API. To convert a version 4.0 module
to 4.1, the following changes must be made. First, the *_block() function must be re-written.
Next, calls to taxonomy_get_tree() must be re-written to supply the parameters required by
the new function. Finally, you may wish to take advantage of new functions added to the
taxonomy API.

Required changes
Modified block hook:

Drupal 4.0:

function *_block() {
 $blocks[0]["info"] = "First block info";
 $blocks[0]["subject"] = "First block subject";
 $blocks[0]["content"] = "First block content";

 $blocks[1]["info"] = "Second block info";
 $blocks[1]["subject"] = "Second block subject";
 $blocks[1]["content"] = "Second block content";

 // return array of blocks
 return $blocks;
 }
}

Drupal 4.1:

function *_block($op = "list", $delta = 0) {
 if ($op == "list") {
 $blocks[0]["info"] = "First block info";
 $blocks[1]["info"] = "Second block info";
 return $blocks; // return array of block infos
 }
 else {
 switch($delta) {
 case 0:
 $block["subject"] = "First block subject";
 $block["content"] = "First block content";
 return $block;
 case 1:
 $block["subject"] = "Second block subject";
 $block["content"] = "Second block content";
 return $block;
 }
 }
}

Modified taxonomy API:

Changes: in function taxonomy_get_tree()

there is no longer a "parent" property; rather "parents" is an array
the result tree is now returned instead of being passed by reference

74

15 Jan 2006Drupal Handbook

Drupal 4.0:

function taxonomy_get_tree($vocabulary_id, &$tree, $parent = 0, $depth = -1, $key = "tid")

Drupal 4.1:

$tree = taxonomy_get_tree($vocabulary_id, $parents = 0, $depth = -1, $key = "tid")

Optional changes
Take advantage of new taxonomy functions
taxonomy_get_vocabulary_by_name($name) and
taxonomy_get_term_by_name($name)
Take advantage of pager functions
Move hardcoded markup from modules to themes, using theme_invoke

Converting 4.1 modules to 4.2
Some points posted by Axel on drupal-devel on migrating 4.1.0 modules to CVS [updated and
added to by ax]:

the big "clean URL" patch: Over the weekend, [dries] bit the bullet and converted every
single URL in Drupal’s code. meaning we’ll [can] have clean URLs like
http://foo.com/archive/2003/01/06, http://foo.com/user/42, http://foo.com/blog, and
so on.. meaning, for the code:

drupal_url(array("mod" => "search", "op" => "bla"), "module"[,
$anchor = ""])
 became
url("search/bla"),
 with the first url part being the module, the second (typically) being the operation
($op); more arguments are handled differently per module convention.
l("view node", array("op" => "view", "id" => $nid), "node"[,
$anchor = "", $attributes = array()])
 became
l("view node", "node/view/$nid"[,$attributes = array(), $query =
NULL])
 similar,
lm(), which meant "module link" and used to be
module.php?mod=bla&op=blub..., is now l("title", "bla/blub/..."); and
la(), which meant "admin link" and used to be admin.php?mod=bla&op=blub...,
is now l("title", "admin/bla/blub/..."
After fixing those functions, you’ll need to edit your _page() function and possibly
others so that they get their arguments using the arg() function (see
includes/common.inc. These arguments used to be globals called "mod", "op", "id" etc.
now these same arguments must be accessed as arg(1), arg(3), for example.

$theme->function() became theme("function"). see [drupal-devel] renaming 2
functions, [drupal-devel] theme("function") vs $theme->function() and [drupal-devel] [CVS]

75

Drupal Handbook15 Jan 2006

http://drupal.org/node/view/608
http://lists.drupal.org/pipermail/drupal-devel/2003-February/022183.html
http://drupal.org/node.php?id=322
http://lists.drupal.org/pipermail/drupal-devel/2003-January/020973.html
http://foo.com/archive/2003/01/06
http://foo.com/user/42
http://foo.com/blog
http://lists.drupal.org/pipermail/drupal-devel/2003-February/021824.html
http://lists.drupal.org/pipermail/drupal-devel/2003-February/021824.html
http://lists.drupal.org/pipermail/drupal-devel/2003-February/021927.html
http://lists.drupal.org/pipermail/drupal-devel/2003-February/021936.html

theme()
<module>_conf_options() became <module>_settings() - see
[drupal-devel] renaming 2 functions. note that doesn’t get an extra menu entry, but
is accessed via "site configuration > modules > modules settings"

the administration pages got changed quite a lot to use a "database driven link system" and
become more logical/intuitive - see [drupal-devel] X-mas commit: administration pages.
this first try resulted in poor performance and a not-so-good api, so it got refactored - see
[PATCH] menus. this, as of time ax is writing this, isn’t really satisfying, neither (you cannot
build arbitrary menu-trees, some forms don’t work (taxonomy > add term), ...), so it probably
will change again. and i won’t write more about this here.

well, this: you use menu() to add entries to the admin menu.
menu("admin/node/nodes/0", "new or updated posts", "node_admin",
"help", 0); adds a menu entry "new or updated posts" 1 level below "post overview"
(admin/node/nodes) and 2 level below "node management" (admin/node) (ie. at the 3. level),
with a weight of 0 in the 3. level, with a line "help" below the main heading. for the callback
("node_admin") ... ask dries or zbynek

one more note, though: you do not add <module>_settings() to the menu (they
automatically go to "site configuration > modules > module settings" - you only add
<module>_admin...() ... things.

[from comment_is_new function lost]
- comment_is_new($comment)
+ node_is_new($comment->nid, $comment->timestamp)

please add / update / correct!

Converting 4.2 modules to 4.3
Database table prefix

On 2003 Jul 10, Dries committed Slavica’s table prefix patch which allows for a configurable
"“prefix to each drupal mysql table to easily share one database for multiply applications on
server with only one database allowed.”" This patch requires all table names in SQL-queries
to be enclosed in {curly brackets}, eg.

- db_query("DELETE FROM book WHERE nid = %d", $node->nid);
+ db_query("DELETE FROM {book} WHERE nid = %d", $node->nid);

so that the table prefix can be dynamically prepended to the table name. See the original
feature request and the corresponding discussion at the mailing list for details.

New help system
From Michael Frankowski message:

76

15 Jan 2006Drupal Handbook

http://lists.drupal.org/pipermail/drupal-devel/2003-February/021936.html
http://lists.drupal.org/pipermail/drupal-devel/2003-February/021824.html
http://lists.drupal.org/pipermail/drupal-devel/2002-December/020726.html
http://lists.drupal.org/pipermail/drupal-devel/2003-February/022134.html
http://drupal.org/node/view/4230#6570
http://drupal.org/node/view/805
http://drupal.org/node/view/805
http://drupal.org/node/view/805
http://lists.drupal.org/pipermail/drupal-devel/2003-July/027145.html
http://lists.drupal.org/archives/drupal-devel/2003-10/msg00519.html

There is a block of text placed at the top of each admin page by
the admin_page function. After 4.3.0 is out the door the function
menu_get_active_help() should probably be renamed/moved into the help module
and be attached -- somehow -- to every _page hook (probably in the node module) so that
we can use this system through out Drupal but for now, there is a block of text displayed at the
top of every admin page. This is the active help block. (context sensitive help?)

If the URL of the admin page matches a URL in a _help hook then the text from that
_help hook is displayed on the top of the admin page. If there is no match, the block it not
displayed. Because Drupal matches URLs in order to stick "other" stuff in the _help hook
we have taken to sticking descriptors after a "#" sign. So far, the following descriptors are
recognised:

Descriptor Function

admin/system/modules#name The name of a module (unused, but there)

admin/system/modules#description The description found on the
admin/system/modules page.

admin/help#modulename
The module’s help text, displayed on the
admin/help page and through the module’s
individual help link.

user/help#modulename The help for a distrbuted authorization module

In the future we will probably recognise #block for the text needed
in a block displayed by the help system.

Creating modules for version 4.3.1
This tutorial describes how to create a module for Drupal-CVS
(i.e. Drupal version > 4.3.1). A module is a collection of functions that link into Drupal,
providing
additional functionality to your Drupal installation. After reading this tutorial, you
will be able to create a basic block module and use it as a template for
more advanced modules and node modules.

This tutorial will not necessarily prepare you to write modules for
release into the wild. It does not cover caching, nor does it elaborate
on permissions or security issues. Use this tutorial as a starting
point, and review other modules and the [Drupal handbook] and [Coding
standards] for more information.

This tutorial assumes the following about you:

Basic PHP knowledge, including syntax and the concept of PHP objects
Basic understanding of database tables, fields, records and SQL statements

77

Drupal Handbook15 Jan 2006

A working Drupal installation
Drupal administration access
Webserver access

This tutorial does not assume you have any knowledge about the inner
workings of a Drupal module. This tutorial will not help you write
modules for Drupal 4.3.1 or before.

Getting Started

To focus this tutorial, we’ll start by creating a block module that
lists links to content such as blog entries or forum discussions that
were created one week ago. The full tutorial will teach us how to
create block content, write links, and retrieve information from Drupal
nodes.

Start your module by creating a PHP file and save it as ’onthisdate.module’.

<?php
?>

As per the [Coding standards], use the longhand <?php tag,
and not <? to enclose your PHP code.

All functions in your module are named {modulename}_{hook}, where
"hook" is a well defined function name. Drupal will call these
functions to get specific data, so having these well defined names means
Drupal knows where to look.

Telling Drupal about your module

The first function we’ll write will tell Drupal information about your
module: its name and description. The hook name for this function is
’help’, so start with the onthisdate_help function:

<?php
function onthisdate_help($section) {
}
?>

The $section variable provides context for the help: where in Drupal or
the module are we looking for help. The recommended way to process this
variable is with a switch statement. You’ll see this code pattern in
other modules.

<?php
/* Commented out until bug fixed */
/*

78

15 Jan 2006Drupal Handbook

function onthisdate_help($section) {
 switch($section) {
 case "admin/system/modules#name":
 $output = "onthisdate";
 break;
 case "admin/system/modules#description":
 $output = "Display a list of nodes that were created a week
ago.";
 break;
 default:
 $output = "onthisdate";
 break;
 }
 return $output;
}
*/
?>

You will eventually want to add other cases to this switch statement to
provide real help messages to the user. In particular, output for
"admin/help#onthisdate" will display on the main help page accessed by
the admin/help URL for this module (/admin/help or ?q=admin/help).

Note:This function is commented out in the above code. This is
on purpose, as the current version of Drupal CVS won’t display the
module name, and won’t enable it properly when installed. Until this
bug is fixed, comment out your help function, or your module may not
work.

Telling Drupal who can use your module

The next function to write is the permissions function. Here, you can
tell Drupal who can access your module. At this point, give permission
to anyone who can access site content or administrate the module.

<?php
function onthisdate_perm() {
 return array("administer onthisdate");
}
?>

If you are going to write a module that needs to have finer control over
the permissions, and you’re going to do permission control, you may want
to define a new permission set. You can do this by adding strings to
the array that is returned:

79

Drupal Handbook15 Jan 2006

<?php
function onthisdate_perm() {
 return array("access onthisdate", "administer onthisdate");
}
?>

You’ll need to adjust who has permission to view your module on the
administer Â» accounts Â» permissions page. We’ll use the user_access
function to check access permissions later.

Be sure your permission strings must be unique to your module. If they
are not, the permissions page will list the same permission multiple
times.

Announce we have block content

There are several types of modules: block modules and node modules are
two. Block modules create abbreviated content that is typically (but
not always, and not required to be) displayed along the left or right
side of a page. Node modules generate full page content (such as blog,
forum, or book pages).

We’ll create a block content to start, and later discuss node content.
A module can generate content for blocks and also for a full page (the
blogs module is a good example of this). The hook for a block module is
appropriately called "block", so let’s start our next function:

<?php
function onthisdate_block($op=’list’, $delta=0) {
}
?>

The block function takes two parameters: the operation and the offset,
or delta. We’ll just worry about the operation at this point. In
particular, we care about the specific case where the block is being
listed in the blocks page. In all other situations, we’ll display the
block content.

<?php
function onthisdate_block($op=’list’, $delta=0) {
 // listing of blocks, such as on the admin/system/block page
 if ($op == "list") {
 $block[0]["info"] = t("On This Date");
 return $block;
 } else {
 // our block content
 }
}

80

15 Jan 2006Drupal Handbook

http://drupal.org/#settings

?>

Generate content for a block

Now, we need to generate the ’onthisdate’ content for the block. In
here, we’ll demonstrate a basic way to access the database.

Our goal is to get a list of content (stored as "nodes" in the database)
created a week ago. Specifically, we want the content created between
midnight and 11:59pm on the day one week ago. When a node is first
created, the time of creation is stored in the database. We’ll use this
database field to find our data.

First, we need to calculate the time (in seconds since epoch start, see
http://www.php.net/manual/en/function.time.php for more information on
time format) for midnight a week ago, and 11:59pm a week ago. This part
of the code is Drupal independent, see the PHP website (http://php.net/)
for more details.

<?php
function onthisdate_block($op=’list’, $delta=0) {
 // listing of blocks, such as on the admin/system/block page
 if ($op == "list") {
 $block[0]["info"] = t("On This Date");
 return $block;
 } else {
 // our block content
 // Get today’s date
 $today = getdate();
 // calculate midnight one week ago
 $start_time = mktime(0, 0, 0,
 $today[’mon’], ($today[’mday’] - 7),
$today[’year’]);
 // we want items that occur only on the day in question, so
calculate 1 day
 $end_time = $start_time + 86400; // 60 * 60 * 24 = 86400
seconds in a day
 ...
 }
}
?>

The next step is the SQL statement that will retrieve the content we’d
like to display from the database. We’re selecting content from the
node table, which is the central table for Drupal content. We’ll get
all sorts of content type with this query: blog entries, forum posts,
etc. For this tutorial, this is okay. For a real module, you would

81

Drupal Handbook15 Jan 2006

http://www.php.net/manual/en/function.time.php
http://php.net/

adjust the SQL statement to select specific types of content (by adding
the ’type’ column and a WHERE clause checking the ’type’ column).

Note: the table name is enclosed in curly braces: {node}.
This is necessary so that your module will support database table name
prefixes. You can find more information on the Drupal website by
reading the [Table Prefix (and sharing tables across instances)] page in
the Drupal handbook.

<?php
 $query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’";
?>

Drupal uses database helper functions to perform database queries. This
means that, for the most part, you can write your database SQL statement
and not worry about the backend connections.

We’ll use db_query() to get the records (i.e. the database rows) that
match our SQL query, and db_fetch_object() to look at the individual
records:

<?php
 // get the links
 $queryResult = db_query($query);
 // content variable that will be returned for display
 $block_content = ’’;
 while ($links = db_fetch_object($queryResult)) {
 $block_content .= ’nid)
. ’">’ .
 $links->title . ’
’;
 }
 // check to see if there was any content before setting up the
block
 if ($block_content == ’’) {
 /* No content from a week ago. If we return nothing, the block
 * doesn’t show, which is what we want. */
 return;
 }
 // set up the block
 $block[’subject’] = ’On This Date’;
 $block[’content’] = $block_content;
 return $block;
}
?>

82

15 Jan 2006Drupal Handbook

Notice the actual URL is enclosed in the url() function. This adjusts
the URL to the installations URL configuration of either clean URLS:
http://sitename/node/view/2 or http://sitename/?q=node/view/2

Also, we return an array that has ’subject’ and ’content’ elements.
This is what Drupal expects from a block function. If you do not
include both of these, the block will not render properly.

You may also notice the bad coding practice of combining content with
layout. If you are writing a module for others to use, you will want to
provide an easy way for others (in particular, non-programmers) to
adjust the content’s layout. An easy way to do this is to include a
class attribute in your link, and not necessarily include the
 at the end of the link. Let’s ignore this for now, but be aware
of this issue when writing modules that others will use.

Putting it all together, our block function looks like this:

<?php
function onthisdate_block($op=’list’, $delta=0) {
 // listing of blocks, such as on the admin/system/block page
 if ($op == "list") {
 $block[0]["info"] = t("On This Date");
 return $block;
 } else {
 // our block content
 // content variable that will be returned for display
 $block_content = ’’;
 // Get today’s date
 $today = getdate();
 // calculate midnight one week ago
 $start_time = mktime(0, 0, 0,
 $today[’mon’], ($today[’mday’] - 7),
$today[’year’]);
 // we want items that occur only on the day in question, so
calculate 1 day
 $end_time = $start_time + 86400; // 60 * 60 * 24 = 86400
seconds in a day
 $query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’";
 // get the links
 $queryResult = db_query($query);
 while ($links = db_fetch_object($queryResult)) {
 $block_content .= ’nid).’">’.
 $links->title . ’
’;

83

Drupal Handbook15 Jan 2006

http://sitename/node/view/2
http://sitename/?q=node/view/2

 }
 // check to see if there was any content before setting up the
block
 if ($block_content == ’’) {
 // no content from a week ago, return nothing.
 return;
 }
 // set up the block
 $block[’subject’] = ’On This Date’;
 $block[’content’] = $block_content;
 return $block;
 }
}
?>

Installing, enabling and testing the module

At this point, you can install your module and it’ll work. Let’s do
that, and see where we need to improve the module.

To install the module, you’ll need to copy your onthisdate.module file
to the modules directory of your Drupal installation. The file must be
installed in this directory or a subdirectory of the modules directory,
and must have the .module name extension.

Log in as your site administrator, and navigate to the modules
administration page to get an alphabetical list of modules. In the
menus: administer Â» configuration Â» modules, or via URL:

http://.../admin/system/modules or
http://.../?q=admin/system/modules

Note: You’ll see one of three things for the ’onthisdate’ module at this point:

You’ll see the ’onthisdate’ module name and no description
You’ll see no module name, but the ’onthisdate’ description
You’ll see both the module name and the description

Which of these three choices you see is dependent on the state of the
CVS tree, your installation and the help function in your module. If
you have a description and no module name, and this bothers you, comment
out the help function for the moment. You’ll then have the module name,
but no description. For this tutorial, either is okay, as you will just
enable the module, and won’t use the help system.

84

15 Jan 2006Drupal Handbook

Enable the module by selecting the checkbox and save your configuration.

Because the module is a blocks module, we’ll need to also enable it in
the blocks administration menu and specify a location for it to display.
Navigate to the blocks administration page: admin/system/block or
administer Â» configuration Â» blocks in the menus.

Enable the module by selecting the enabled checkbox for the ’On This
Date’ block and save your blocks. Be sure to adjust the location
(left/right) if you are using a theme that limits where blocks are
displayed.

Now, head to another page, say select the module. In some themes, the
blocks are displayed after the page has rendered the content, and you
won’t see the change until you go to new page.

If you have content that was created a week ago, the block will display
with links to the content. If you don’t have content, you’ll need to
fake some data. You can do this by creating a blog, forum topic or book
page, and adjust the "Authored on:" date to be a week ago.

Alternately, if your site has been around for a while, you may have a
lot of content created on the day one week ago, and you’ll see a large
number of links in the block.

Create a module configuration (settings) page

Now that we have a working module, we’d like to make it better. If we
have a site that has been around for a while, content from a week ago
might not be as interesting as content from a year ago. Similarly, if
we have a busy site, we might not want to display all the links to
content created last week. So, let’s create a configuration page for
the administrator to adjust this information.

The configuration page uses the ’settings’ hook. We would like only
administrators to be able to access this page, so we’ll do our first
permissions check of the module here:

<?php
function onthisdate_settings() {
 // only administrators can access this module
 if (!user_access("admin onthisdate")) {
 return message_access();
 }
}
?>

85

Drupal Handbook15 Jan 2006

If you want to tie your modules permissions to the permissions of
another module, you can use that module’s permission string. The
"access content" permission is a good one to check if the user can view
the content on your site:

<?php
 ...
 // check the user has content access
 if (!user_access("access content")) {
 return message_access();
 }
 ...
?>

We’d like to configure how many links display in the block, so we’ll
create a form for the administrator to set the number of links:

<?php
function onthisdate_settings() {
 // only administrators can access this module
 if (!user_access("admin onthisdate")) {
 return message_access();
 }
 $output .= form_textfield(t("Maximum number of links"),
"onthisdate_maxdisp",
 variable_get("onthisdate_maxdisp", "3"), 2, 2,
 t("The maximum number of links to display in the
block."));
 return $output;
}
?>

This function uses several powerful Drupal form handling features. We
don’t need to worry about creating an HTML text field or the form, as
Drupal will do so for us. We use variable_get to retrieve
the value of the system configuration variable "onthisdate_maxdisp",
which has a default value of 3. We use the form_textfield function to
create the form and a text box of size 2, accepting a maximum length of
2 characters. We also use the translate function of t(). There are
other form functions that will automatically create the HTML form
elements for use. For now, we’ll just use the form_textfield function.

Of course, we’ll need to use the configuration value in our SQL SELECT,
so we’ll need to adjust our query statement in the onthisdate_block
function:

86

15 Jan 2006Drupal Handbook

<?php
 $limitnum = variable_get("onthisdate_maxdisp", 3);
 $query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’ LIMIT " . $limitnum;
?>

You can test the settings page by editing the number of links displayed
and noticing the block content adjusts accordingly.

Navigate to the settings page: admin/system/modules/onthisdate or
administer Â» configuration Â» modules Â» onthisdate. Adjust the number
of links and save the configuration. Notice the number of links in the
block adjusts accordingly.

Note:We don’t have any validation with this input. If you enter
"c" in the maximum number of links, you’ll break the block.

Adding menu links and creating page content

So far we have our working block and a settings page. The block
displays a maximum number of links. However, there may be more links
than the maximum we show. So, let’s create a page that lists all the
content that was created a week ago.

<?php
function onthisdate_all() {
}
?>

We’re going to use much of the code from the block function. We’ll
write this ExtremeProgramming style, and duplicate the code. If we need
to use it in a third place, we’ll refactor it into a separate function.
For now, copy the code to the new function onthisdate_all(). Contrary
to all our other functions, ’all’, in this case, is not a Drupal hook.
We’ll discuss below.

<?php
function onthisdate_all() {
 // content variable that will be returned for display
 $page_content = ’’;
 // Get today’s date
 $today = getdate();
 // calculate midnight one week ago
 $start_time = mktime(0, 0, 0,
 $today[’mon’], ($today[’mday’] - 7),
$today[’year’]);
 // we want items that occur only on the day in question, so

87

Drupal Handbook15 Jan 2006

calculate 1 day
 $end_time = $start_time + 86400; // 60 * 60 * 24 = 86400 seconds
in a day
 // NOTE! No LIMIT clause here! We want to show all the code
 $query = "SELECT nid, title, created FROM " .
 "{node} WHERE created >= ’" . $start_time .
 "’ AND created <= ’". $end_time . "’";
 // get the links
 $queryResult = db_query($query);
 while ($links = db_fetch_object($queryResult)) {
 $page_content .= ’nid).’">’.
 $links->title . ’
’;
 }
 ...
}
?>

We have the page content at this point, but we want to do a little more
with it than just return it. When creating pages, we need to send the
page content to the theme for proper rendering. We use this with the
theme() function. Themes control the look of a site. As noted above,
we’re including layout in the code. This is bad, and should be
avoided. It is, however, the topic of another tutorial, so for now,
we’ll include the formatting in our content:

<?php
 print theme("page", $content_string);
?>

The rest of our function checks to see if there is content and lets the
user know. This is preferable to showing an empty or blank page, which
may confuse the user.

Note that we are responsible for outputting the page content with the
’print theme()’ syntax. This is a change from previous 4.3.x themes.

<?php
function onthisdate_all() {
 ...
 // check to see if there was any content before setting up the
block
 if ($page_content == ’’) {
 // no content from a week ago, let the user know
 print theme("page",
 "No events occurred on this site on this date in
history.");
 return;

88

15 Jan 2006Drupal Handbook

 }
 print theme("page", $page_content);
}
?>

Letting Drupal know about the new function

As mentioned above, the function we just wrote isn’t a ’hook’: it’s not
a Drupal recognized name. We need to tell Drupal how to access the
function when displaying a page. We do this with the _link hook and
the menu() function:

<?php
function onthisdate_link($type, $node=0) {
}
?>

There are many different types, but we’re going to use only ’system’ in
this tutorial.

<?php
function onthisdate_link($type, $node=0) {
 if (($type == "system")) {
 // URL, page title, func called for page content, arg, 1 = don’t
disp menu
 menu("onthisdate", t("On This Date"), "onthisdate_all", 1, 1);
 }
}
?>

Basically, we’re saying if the user goes to "onthisdate" (either via
?q=onthisdate or http://.../onthisdate), the content generated by
onthisdate_all will be displayed. The title of the page will be "On
This Date". The final "1" in the arguments tells Drupal to not display
the link in the user’s menu. Make this "0" if you want the user to see
the link in the side navigation block.

Navigate to /onthisdate (or ?q=onthisdate) and see what you get.

Adding a more link and showing all entries

Because we have our function that creates a page with all the content
created a week ago, we can link to it from the block with a "more" link.

Add these lines just before that $block[’subject’] line, adding this to
the $block_content variable before saving it to the $block[’content’]
variable:

89

Drupal Handbook15 Jan 2006

http://.../onthisdate

<?php
 // add a more link to our page that displays all the links
 $block_content .= "<div class=\"more-link\">". l(t("more"),
"onthisdate", array("title" => t("More events on this day.")))
."</div>";
?>

This will add the more link.

Conclusion

We now have a working module. It created a block and a page. You
should now have enough to get started writing your own modules. We
recommend you start with a block module of your own and move onto a node
module. Alternately, you can write a filter or theme.

As is, this tutorial’s module isn’t very useful. However, with a few
enhancements, it can be entertaining. Try modifying the select query
statement to select only nodes of type ’blog’ and see what you get.
Alternately, you could get only a particular user’s content for a
specific week. Instead of using the block function, consider expanding
the menu and page functions, adding menus to specific entries or dates,
or using the menu callback arguments to adjust what year you look at the
content from.

If you start writing modules for others to use, you’ll want to provide
more details in your code. Comments in the code are incredibly valuable
for other developers and users in understanding what’s going on in your
module. You’ll also want to expand the help function, providing better
help for the user. Follow the Drupal [Coding standards], especially if
you’re going to add your module to the project.

Two topics very important in module development are writing themeable
pages and writing translatable content. Please check the [Drupal
Handbook] for more details on these two subject.

How to build up a _help hook
The following template can be used to build a _help hook.

<?php
function <modulename>_help($section){
 $output = "";
 switch ($section) {
 }
 return $output;
}
?>

90

15 Jan 2006Drupal Handbook

In the template replace modulename with the name of your module.

If you want to add help text to the overall administrative section. (admin/help) stick this
inside the switch:

<?php
 case ’admin/help#<modulename>’:
 $output = t(’The text you want displayed’);
 break;
?>

If you also want this same text displayed for an individual help link in your menu area. You
have this kind of tree:

 + Administration
 |
 -> Your area
 | |
 | -> Your configuration
 | -> help
 |
 -> Overall admin help.

Change the function line to this:

<?php
function <modulename>_help($section = ’admin/help#<modlename>’) {
?>

Now that you have the template started place a case statement in for any URL you want a
"context sesitive" help message in the admin section. An example, you have a page that
individually configures your module, it is at admin/system/modules/, you want to add
some text to the top help area.

<?php
case ’admin/system/modules/<modulename>’:
$output = t(’Your new help text’);
break;
?>

How to convert a _system hook
There are three things that can appear in a _system hook:

91

Drupal Handbook15 Jan 2006

Field Function

$field == "name" The module name

$field ==
"description" The description placed in the module list

$field ==
"admin-help"

The help text placed at the TOP of this module’s individual
configuration area.

Take the text for each one and move it into the _help hook. Replace the $system[<name>]
that is normally at the front of each one with $output, now place a "break;" after the line and
a case ’<name>’: before it where name is one of the following:

If $system is $system["name"] then the case is case
’admin/system/modules#name’
If $system is $system["description"] then case is case
’admin/system/modules#description’
If $system is $system["admin-help"] then the case is case
’admin/system/modules/<modulename>’

Now remove the _system function and you are done.

An example:

<?php
function example_system($field){
 $system["description"] = t("This is my example _system hook to
convert for
the help system I have spent a lot of time with.");
 $system["admin-help"] = t("Can you believe that I would actually
write an
indivdual setup page on an EXAMPLE module??");
 return $system[$field];
}
?>
<?php
function example_help($section) {
 $output = "";
 switch ($section) {
 case ’admin/system/modules#example’:
 $output = t("This is my example _system hook to convert for
the help
system I have spent a lot of time with.");
 break;
 case ’admin/system/modules/example’:
 $output = t("Can you believe that I would actually write an
indivdual

92

15 Jan 2006Drupal Handbook

setup page on an EXAMPLE module??");
 break;
 }
 return $output;
}
?>

How to convert an _auth_help hook
Okay, you have written your Distributed Authorization module, and given us a great help
text for it and I had to go and ruin it all by changing the help system. What a terrible thing for
me to do. How do you convert it?

It is not that hard. There are two places you have to deal with:

1. The text inside the _auth_help hook needs to be moved inside the _help hook under the
section user/help#<modulename> and

2. You have to change the _page hook, which normally displays that help text, to find
your text in a new location by changing the function call
<modulename>_auth_help() to
<modulename>_help("user/help#<modulename>").

See, it is not THAT terrible.

An example:

<?php
function exampleda_page() {
 theme("header");
 theme("box", "Example DA", exampleda_auth_help());
 theme("footer");
}
function exampleda_auth_help() {
 $site = variable_get("site_name", "this web site");
 $html_output = "
 <p>This is my example Distributed Auth help. Using this example
you cannot login to <i>%s</i> because it has no _auth hook.&</p>
<p><u>BUT</u> you should still use Drupal since it is a GREAT
CMS and is only getting better.</p>
<p>To learn about about Drupal you can visit the site</p>";
 return sprintf(t($html_output), $site);
}
?>
<?php
function exampleda_page() {
 theme("header");

93

Drupal Handbook15 Jan 2006

 theme("box", "Example DA", exampleda_help(’user/help#exampleda’));
 theme("footer");
}
function exampleda_help($section) {
 $output = "";
 switch ($section) {
 case ’user/help#exampleda’:
 $site = variable_get("site_name", "this web site");
 $output .= "<p>This is my example Distributed Auth help. Using
this example you cannot login to %site because it has no _auth
hook.</p>";
 $output .= "<p><u>BUT&</u> you should still use Drupal
since it is a GREAT CMS and is only getting better.</p>";
 $output .= "<p>To learn about about Drupal you can
visit %drupal.</p>";
 $output = t($output, array("%site" => "<i>$site</i>",
"%drupal" => "visit the site"));
 break;
 }
 return $output
}
?>

Converting 4.3 modules to 4.4
Since Drupal 4.3, major changes have been made to the theme, menu, and node systems. Most
themes and modules will require some changes.

Menu system
The Drupal menu system has been extended to drive all pages, not just administrative pages.
This is continuing the work done for Drupal 4.3, which integrated the administrative menu with
the user menu. We now have consistency between administrative and "normal" pages; when
you learn to create one, you know how to create the other.

The flow of page generation now proceeds as follows:

1. The _link hook in all modules is called, so that modules can use menu() to add items to
the menu. For example, a module could define:
<?php
function example_link($type) {
 if ($type == "system") {
 menu("example", t("example"), "example_page");
 menu("example/foo", t("foo"), "example_foo");
 }
}
?>

94

15 Jan 2006Drupal Handbook

2. The menu system examines the current URL, and finds the "best fit" for the URL in the
menu. For example, if the current URL is example/foo/bar/12, the above menu() calls
would cause example_foo("bar", 12) to get invoked.

3. The callback may set the title or breadcrumb trail if the defaults are not satisfactory (more
on this later).

4. The callback is responsible for printing the requested page. This will usually involve
preparing the content, and then printing the return value of theme("page"). For example:
<?php
function example_foo($theString, $theNumber) {
 $output = $theString. " - " .$theNumber;
 print theme("page", $output);
}
?>

The following points should be considered when upgrading modules to use the new menu
system:

The _page hook is obsolete. Pages will not be shown unless they are declared with a
menu() call as discussed above. To convert former _page hooks to the new system as
simply as possible, just declare that function as a "catchall" callback:
<?php
 menu("example", t("example"), "example_page", 0, MENU_HIDE);
?>
The trailing MENU_HIDE argument in this call makes the menu item hidden, so the
callback functions but the module does not clutter the user menu.
Old administrative callbacks returned their content. In the new system, administrative and
normal callbacks alike are responsible for printing the entire page.
The title of the page is printed by the theme system, so page content does not need to be
wrapped in a theme("box") to get a title printed. If the default title is not satisfactory, it
can be changed by calling drupal_set_title($title) before theme("page") gets
called, or by passing the title to theme("page") as a parameter.
The breadcrumb trail is also printed by the theme. If the default one needs to be overridden
(to present things like forum hierarchies), this can be done by calling
drupal_set_breadcrumb($breadcrumb) before theme("page") gets called, or by
passing the breadcrumb to theme("page") as a parameter. $breadcrumb should be a list
of links beginning with "Home" and proceeding up to, but not including, the current page.

Theme system
For full information on theme system changes, see converting 4.3 themes to CVS. The following
points are directly relevant to module development:

All theme functions now return their output instead of printing them to the user. Old
theme() usage:
<?php
theme("box", $title, $output);
?>

95

Drupal Handbook15 Jan 2006

http://drupal.org/node/view/4475

New usage:
<?php
print theme("box", $title, $output);
?>
Modules that define their own theme functions should also return their output.
The naming of theme functions defined by modules has been standardized to
theme_<module>_<name>. When using a theme function there is no need
to include the theme_ part, as theme() will do this automatically. Example:
<?php
function theme_example_list($list) {
 return implode(’
’, $list);
}
print theme(’example_list’, array(1,2,3));
?>
Theme functions must always be called using theme() to allow for the active theme to
modify the output if necessary.
The theme("header") and theme("footer") functions are not available anymore.
Module developers should use the theme("page") function which wraps the content in
the site theme. The full syntax of this function is
<?php
theme("page", $output, $title, $breadcrumb);
?>
where $title and $breadcrumb will override any values set before for these properties.

Node system
The node system has been upgraded to allow a single module to define more than one type of
node. This will allow some of the more convoluted code in, for example, project.module to be
tidied up.

The _node() hook has been deprecated. In its place, modules that define nodes should use
_node_name() and _help().
The _node_name() function should return a translated string containing the
human-readable name of the node type.
The _help() function, when called with parameter "node/add#modulename", should
return a translated string containing the description of the node type.
Modules wishing to use the new ability to define multiple node types should see the
Doxygen documentation for hook_node_name() and hook_node_types().

Filter system
The various filter hooks (’filter’, ’conf_filters’) have been merged into one ’filter’ hook. A
module that provides filtering functionality should implement:
<?php
function example_filter($op, $text = "") {
 switch ($op) {

96

15 Jan 2006Drupal Handbook

http://drupal.org/doxygen/drupal/
http://drupal.org/doxygen/drupal/group__hooks.html#ga30
http://drupal.org/doxygen/drupal/group__hooks.html#ga31

 case "name":
 return t("Name of the filter");
 case "prepare":
 // Do preparing on $text
 return $text;
 case "process":
 // Do processing on $text
 return $text;
 case "settings":
 // Generate $output of settings
 return $output;
 }
}
?>

"name" is new, and should return a friendly name for the filter.

"prepare" is also new. This is an extra step that is performed before the default HTML
processing, if HTML tags are allowed. It is meant to give filters the chance to escape
HTML-like data before it can get stripped. This means, to convert meaningful HTML
characters like < and > into entities such as < and >.

Common examples include filtering pieces of PHP code, mathematical formulas, etc. It
is not allowed to do anything other than escaping in the "prepare" step.

If your filter currently performs such a step in the main "process" step, it should be
moved into "prepare" instead. If you don’t need any escaping, your filter should simply
return $text without processing in this case.

"process" is the equivalent of the old "filter" hook. Normal filtering is performed here,
and the changed $text is returned.
"settings" is the equivalent of the old "conf_filters" hook. If your filter provides
configurable options, you should return them here (using the standard form_*
functions).

The filter handling code has been moved to a new required filter.module, and thus
most of the filter function names changed, although none of those should have been called
from modules. The check_output() function is still available with the same functionality.
Node filtering is optimized with the node_prepare() function now, which only runs the
body through the filters if the node view page is displayed. Otherwise, only the teaser is
filtered.
The _compose_tips hook (defined by the contrib compose_tips.module) is not
supported anymore, but more advanced functionality exists in the core. You can emit
extensive compose tips related to the filter you define via the _help hook with the
’filter#long-tip’ section identifier. The compose_tips URL is thus changed to
filter/tips. The form_allowed_tags_text() function is replaced with
filter_tips_short(), which now supports short tips to be placed under textareas. Any
module can inject short tips about the filter defined via the _help hook, with the
’filter#short-tip’ section identifier.

97

Drupal Handbook15 Jan 2006

Hook changes
Other than those mentioned above, the following hooks have changed:

The _view hook has been changed to return its content rather than printing it. It also has an
extra parameter, $page, that indicates whether the node is being viewed as a standalone
page or as part of a larger context. This is important because nodes may change the
breadcrumb trail if they are being viewed as a page. Old usage:
<?php
function example_view($node, $main = 0) {
 if ($main) {
 theme("node", $node, $main);
 }
 else {
 $breadcrumb[] = l(t("Home"), "");
 $breadcrumb[] = l(t("foo"), "foo");
 $node->body = theme("breadcrumb", $breadcrumb) ."
".
$node->body;
 theme("node", $node, $main);
 }
}
?>
New usage:
<?php
function example_view($node, $main = 0, $page = 0) {
 if ($main) {
 return theme("node", $node, $main, $page);
 }
 else {
 if ($page) {
 $breadcrumb[] = l(t("Home"), "");
 $breadcrumb[] = l(t("foo"), "foo");
 drupal_set_breadcrumb($breadcrumb);
 }
 return theme("node", $node, $main, $page);
 }
}
?>
The _form hook used by node modules no longer takes 3 arguments. The second argument
$help, typically used to print submission guidelines, has been removed. Instead, the help
should be emitted using the module’s _help hook. For examples, check the story, forum or
blog module.
The _search hook was changed to not only return the result set array, but a two element
array with the result group title and the result set array. This provides more precise control
over result group titles.
The _head hook is eliminated and replaced with the drupal_set_html_head() and

98

15 Jan 2006Drupal Handbook

drupal_get_html_head() functions. You can add JavaScript code or CSS to the HTML
head part with the drupal_set_html_head() function instead.
See also the description of the _compose_tips hook changes below.

Emitting links
The functions url() and l() take a new $fragment parameter. Calls to url() or l()
that have ’#’ in the $url parameter need to be updated. If you don’t update such calls,
Drupal’s path aliasing won’t work for URLs with # in them.
Drupal now emits relative URLS instead of absolute URLs. Contributed modules must be
updated whenere an absolute url is required. For example:

Any module that outputs an RSS feed without using node_feed() should be
updated. Note: this is discouraged. please use node_feed() instead. Also modules
using node_feed() should provide an absolute link in the ’link’ key, if any.
Any module which send email should be updated so that links in the email have
absolute urls instead of relative urls. You do this using a parameter in your call to l()
or url()

Status and error messages
Modules that use theme(’error’, ...) to print error messages should be updated to
use drupal_set_message(..., ’error’) unless used to print an error message below
a form item.
<?php
drupal_set_message(t(’failed to update X’, ’error’)); // set the
second parameter to ’error’
?>
Modules that print status messages directly to the screen using status() should be
updated to use drupal_set_message(). The status() function has been removed.
<?php
drupal_set_message(t(’updated X’));
?>

Converting 4.4 modules to 4.5
Menu system
The Drupal menu system got a complete rewrite. The new features include:

The administrator may now customize the menu to reorder, remove, and add items.
Menu items may be classified as "local tasks," which will by default be displayed as tabs on
the page content.
The menu API is much more consistent with the rest of Drupal’s API.

99

Drupal Handbook15 Jan 2006

The menu() function is no more. In its place, we have hook_menu(). The old hook_link()
remains, but will no longer be called with the "system" argument. The hook reference in the
Doxygen documentation details all the specifics of this new hook. In short, rather than making
many calls to menu() in your hook_link() implementation, you will implement hook_menu() to
return an array of the menu items you define.

As an example, the old pattern:

<?php
function blog_link($type, $node = 0, $main) {
 global $user;
 if ($type == ’system’) {
 menu(’node/add/blog’, t(’blog entry’), user_access(’maintain
personal blog’) ? MENU_FALLTHROUGH : MENU_DENIED, 0);
 menu(’blog’, t(’blogs’), user_access(’access content’) ?
’blog_page’ : MENU_DENIED, 0, MENU_HIDE);
 menu(’blog/’. $user->uid, t(’my blog’), MENU_FALLTHROUGH, 1,
MENU_SHOW, MENU_LOCKED);
 menu(’blog/feed’, t(’RSS feed’), user_access(’access content’) ?
’blog_feed’ : MENU_DENIED, 0, MENU_HIDE, MENU_LOCKED);
 }
}
?>
becomes:
<?php
function blog_menu($may_cache) {
 global $user;
 $items = array();
 if ($may_cache) {
 $items[] = array(’path’ => ’node/add/blog’, ’title’ => t(’blog
entry’),
 ’access’ => user_access(’maintain personal blog’));
 $items[] = array(’path’ => ’blog’, ’title’ => t(’blogs’),
 ’callback’ => ’blog_page’,
 ’access’ => user_access(’access content’),
 ’type’ => MENU_SUGGESTED_ITEM);
 $items[] = array(’path’ => ’blog/’. $user->uid, ’title’ => t(’my
blog’),
 ’access’ => user_access(’maintain personal blog’),
 ’type’ => MENU_DYNAMIC_ITEM);
 $items[] = array(’path’ => ’blog/feed’, ’title’ => t(’RSS feed’),
 ’callback’ => ’blog_feed’,
 ’access’ => user_access(’access content’),
 ’type’ => MENU_CALLBACK);
 }
 return $items;
}

100

15 Jan 2006Drupal Handbook

http://drupal.org/doxygen/drupal/group__hooks.html#ga15

?>

Drupal now distinguishes between 404 (Not Found) pages and 403 (Forbidden) pages. To
accommodate this, modules should abandon the practice of not declaring menu items when
access is denied to them. Instead, they should set the "access" attribute of their newly-declared
menu item to FALSE. This will have the effect of the menu item being hidden, and also
preventing the callback from being invoked by typing in the URL. Modules may also want to
take advantage of the drupal_access_denied() function, which prints a 403 page (the analogue of
drupal_not_found(), which prints a 404).

Path changes
Some internal URL paths have changed; check the links printed by your code. Most significant is
that paths of the form "node/view/52" are now "node/52" instead, while "node/edit/52"
becomes "node/52/edit".

Node changes
The database field static has been renamed to sticky.
Error handling of forms (such as node editing forms) is now done using form_set_error(). It
simplifies the forms and validation code; however, it does change the node API slightly:

The _validate hook and the _nodeapi(’validate’) hook of the node API no longer take an
"error" parameter, and should no longer return an error array. To set an error, call
form_set_error().
Node modules’ hook_form() implementations no longer take an "error" parameter and
should not worry about displaying errors. The same applies to
hook_nodeapi(’form_post’) and hook_nodeapi(’form_pre’).
All of the form_ family of functions can take a parameter that marks the field as
required in a standard way. Use this instead of adding that information to the field
description.

In order to allow modules such as book.module to inject HTML elements into the view of
nodes safely, hook_nodeapi() was extended to respond to the ’view’ operation. This
operation needs to be invoked after the filtering of the node, so hook_view() was changed
slightly to no longer require a return value. Instead of calling theme(’node’, $node) and
returning the result as before, the hook can just modify $node as it sees fit (including
running $node->body and $node->teaser through the filters, as before), and the calling code
will take care of sending the result to the theme. Most modules will just work under the
new semantics, as the return value from the hook is just discarded, but the $node parameter
is now required to be passed by reference (this was common but optional before).

We have node-level access control now! This means that node modules need to make very
small changes to their hook_access() implementations. The check for $node->status should
be removed; the node module takes care of this check. A value should only be returned
from this hook if the node module needs to override whatever access is granted by the
node_access table. See the hook API for details.

101

Drupal Handbook15 Jan 2006

http://drupal.org/doxygen/drupal/group__hooks.html#ga38
http://drupal.org/doxygen/drupal/group__hooks.html#ga38
http://drupal.org/doxygen/drupal/group__hooks.html#ga2

Node listing queries need to be changed as well, so that they properly check for whether the
user has access to the node before listing it. Queries of the form

<?php
db_query(’SELECT n.nid, n.title FROM {node} n WHERE n.status = 1 AND
foo’);
?>
become
<?php
db_query(’SELECT n.nid, n.title FROM {node} n ’.
node_access_join_sql() .’ WHERE n.status = 1 AND ’.
node_access_where_sql() .’ AND foo’);
?>
See node access rights in the Doxygen reference.

Filtering changes
This change affects non-filter modules as well! Please read on even if your module does not
filter.

The filter system was changed to support multiple input formats. Each input format houses an
entire filter configuration: which filters to use, in what order and with what settings. The filter
system now supports multiple filters per module as well.

Check_output() changes
Because of the multiple input formats, a module which implements content has to take care of
managing the format with each item. If your module uses the node system and passes content
through check_output(), then you need to do two things:

Pass $node->format as the second parameter to check_output() whenever you use it.
Add a filter format selector to hook_form using a snippet like:
<?php
$output .= filter_form(’format’, $node->format);
?>

The node system will automatically save/load the format value for you.

If your module provides content outside of the node system, you can decide if you want to
support multiple input formats or not. If you don’t, the default format will always be used.
However, if your module accepts input through the browser, it is strongly advised to support
input formats!

To do this, you must:

102

15 Jan 2006Drupal Handbook

http://drupal.org/doxygen/drupal/group__node__access.html

Provide a selector for input formats on your forms, using filter_form().
Validate the chosen input format on submission, using filter_access().
Store the format ID with each content item (the format ID is a number).
Pass the format ID to check_output().

Check the API documentation for these functions for more information on how to use them.

Filter hook
The _filter hook was changed significantly. It’s best to start with the following framework:

<?php
function hook_filter($op, $delta = 0, $format = -1, $text = ’’) {
 switch ($op) {
 case ’list’:
 return array(0 => t(’Filter name’));
 case ’description’:
 return t("Short description of the filter’s actions.");
/*
 case ’no cache’:
 return true;
*/
 case ’prepare’:
 $text = ...
 return $text;
 case ’process’:
 $text = ...
 return $text;
 case ’settings’:
 $output = ...;
 return $output;
 default:
 return $text;
 }
}
?>
When converting a module to 4.5, you can normally ignore the $delta paramter: it is used to
have multiple filters inside one module. The ’prepare’, ’process’ and ’settings’ operations still
work the same as before, with only small changes.

However, you should now include the $format parameter in the variable names for filter
settings. If your filter has a setting "myfilter_something", it should be changed to
"myfilter_something_$format". This allows the setting to be set separately for each input format.
To check if it works correctly, add your filter to two different input formats and give each
instance different settings. Verify that each input format retains its own settings.

103

Drupal Handbook15 Jan 2006

http://www.drupaldocs.org/filter_form
http://www.drupaldocs.org/filter_access

Unlike before, the ’settings’ operation should only be used to return actually useful settings,
because there is now a separate overview of all enabled filters. A filter does not need its own
on/off toggle. If a filter has no configurable settings, it should return nothing for the settings,
rather than a message like we did before.

Finally, the filter system now includes caching. If your filter’s output is dynamic and should not
be cached, uncomment the ’no cache’ snippet. Only do this when absolutely necessary, because
this turns off caching for any input format your filter is used in. Beware of the filter cache when
developing your module: it is advised to uncomment ’no cache’ while developing, but be sure to
remove it again if it’s not needed.

Filter tips
Filter tips are now output through the format selector. Modules no longer need to call
filter_tips_short() to display them.

A module’s filter tips are returned through the filter_tips hook:

<?php
function hook_filter_tips($delta, $format, $long = false) {
 if ($long) {
 return t("Long tip");
 }
 else {
 return t("Short tip");
 }
}
?>
As in the filter hook you can ignore the $delta parameter if you’re upgrading an existing
module. If your filter’s tips depend on its settings, make sure you use $format to retrieve the
setting for the current input format. $long tells you whether to return long or short tips.

Other changes
In addition to the above mentioned changes:

hook_user() was changed to allow multiple pages of user profile information. The new
syntax of the hook is given in the API reference. Pay particular attention to the "categories",
"form", and "view" operations.
When processing a form submission, you should use drupal_goto() to redirect to the result
if the submission was accepted. This prevents a double post when people refresh their
browser right after submitting. Messages set with drupal_set_message() will be saved
across the redirect. If a submission was rejected, you should not use drupal_goto(), but
simply print out the form along with error messages.

104

15 Jan 2006Drupal Handbook

http://drupal.org/doxygen/drupal/core_8php.html#a23
http://drupal.org/doxygen/drupal/core_8php.html#a23

Converting 4.5 modules to 4.6
Block system
Every block now has a configuration page to control block-specific options. Modules which have
configurations for their blocks should move those into hook_block().

The only required changes to modules implementing hook_block() is to be careful about what is
returned. Do not return anything if $op is not ’list’ or ’view’. Once this change is made, modules
will still be compatible with Drupal 4.5.

If a specific block has configuration options, implement the additional $op options in your
module. The implementation of ’configure’ should return a string containing the configuration
form for the block with the appropriate $delta. ’save’ will have an additional $edit argument,
which will contain the submitted form data for saving.

Search system
The search system got a significant overhaul.

Node indexing now uses the node’s processed and filtered output, which means that any
custom node fields will automatically be included in the index, as long as they are visible to
normal users who view the node. Modules that implement hook_search() and
hook_update_index() just to have extra node fields indexed no longer need to do this.

If you wish to have additional information indexed that is not visible in the node display at
node/id, then you can do so using nodeapi(’update index’). If you want to add extra information
to the node results, use nodeapi(’search result’).

However, the standard search is still limited to a keyword search. Modules that implement
custom, specific search forms (like project.module) can still do so. Custom search forms that do
not use hook_search() should be located/moved to a local task under the /search page.

If you are unsure of what you need to do, please refer to the complete search documentation.

Module paths
The function module_get_path was renamed to drupal_get_path which now returns the
path for all themes, theme engines and modules. Because of this abstraction you must pass an
additional parameter identifying the type of item for which the path is requested. The following
example compares retrieving the path to image module between Drupal 4.5 and 4.6.

<?php
// Drupal 4.5:
$path = module_get_path(’image’);
// Drupal 4.6:
$path = drupal_get_path(’module’, ’image’);

105

Drupal Handbook15 Jan 2006

http://drupaldocs.org/hook_block
http://drupaldocs.org/api/head/group/search

?>

All instances of module_get_path should be renamed to drupal_get_path.

Database backend
The function check_query was renamed to db_escape_string and now has a database
specific implementation. All instances of check_query should be renamed to
db_escape_string.

Theme system
The function theme_page() no longer takes $title or $breadcrumb arguments. Set page titles
using hook_menu() or, if the title must be dynamically determined, use drupal_set_title(). Set
breadcrumb trails first using hook_menu(), which can be overridden with menu_set_location()
and drupal_set_breadcrumb().

Watchdog messages
The watchdog() function now takes a severity attribute, so watchdog($type, $message,
$link); becomes watchdog($type, $message, $severity, $link);. Specify a
severity in case you are reporting a warning or error. Possible severity constants are:
WATCHDOG_NOTICE, WATCHDOG_WARNING and WATCHDOG_ERROR. Also make sure that you
provide the type as a literal string, so translation extraction can pick it up.

If you are unsure of which severity to use, remember these rules:

If the problem is caused by a definite fault and should be fixed as soon as possible, use an
error message.
If the problem could point to a fault, but could also be harmless, use a warning message.
This type should also be used whenever the problem could be caused by a remote server
(example: ping timeout, failed to aggregate a feed, etc).
Normal messages should be notices.

Node markers
If you have a module calling theme(’mark’), note that it is now possible to have different
markers for different states of a node. The supported states are MARK_NEW, MARK_UPDATED and
MARK_READ. You can get the marker state from node_mark(), which replaces the node_new()
function available in previous Drupal versions.

Control over destination page after form processing
Occasionally a module might want to specify where a user should go after he submits a form.
This is now possible by passing a querystring parameter &destination=<path>. For example,
editing of nodes and comments from within the Admin pages now returns the user to those
pages after he is done. For example usage, search drupal_get_destination() which can be found

106

15 Jan 2006Drupal Handbook

http://drupaldocs.org/theme_page
http://drupaldocs.org/hook_menu
http://drupaldocs.org/menu_set_location
http://drupaldocs.org/drupal_set_breadcrumb

in path.module, node.module, comment.module, and user.module

Confirmation messages
Confirmations for dangerous actions should now be presented with the theme(’confirm’)
function for consistency. Check the function’s documentation or look at some of the core
modules for examples.

Note that this is a themable function which should be invoked through theme(’confirm’)
and not theme_confirm().

Inter module calls
New features are available -- it’s not necessary to use them. Now you can really (and should) use
module_invoke to call a function from another module. For example, taxonomy_get_tree
should be called by module_invoke(’taxonomy’, ’get_tree’) If you need to loop
through the implementations of a hook, please check the new module_implements function.

Node queries
If you have a module which retrieves a list of nodes by issuing its own database query, then the
following applies.

The functions node_access_join_sql() and node_access_where_sql() should not be used any more
but the SELECT-queries should be wrapped in a db_rewrite_sql() call.

If you have used DISTINCT(nid) -- because of node_access_join_sql() -- you no longer need it,
replace it simply with n.nid. If you have SELECT *, please replace it with SELECT n.nid, n.* --
and always make sure that n.nid field comes first in the SELECT statement -- this way the
db_rewrite_sql() function can rewrite the query to use DISTINCT(nid) should there be a need for
it. If the n.nid field is not first, the query will fail when node access modules are enabled. Also, at
the moment db_rewrite_sql can not handle AS -- either leave it out or lowercase it.

Always use table name before the field names, especially before nid because other tables may be
JOINed during the rewrite process.

Example:

<?php
// Drupal 4.5:
$nodes = db_query_range(’SELECT DISTINCT(n.nid) FROM {node} n ’.
node_access_join_sql() .’ WHERE ’. node_access_where_sql() .’ AND
n.promote = 1 AND n.status = 1 ORDER BY n.created DESC’, 0, 15);
// Drupal 4.6:
$nodes = db_query_range(db_rewrite_sql(’SELECT n.nid FROM {node}
n WHERE n.promote = 1 AND n.status = 1 ORDER BY n.created DESC’), 0,
15);
?>

107

Drupal Handbook15 Jan 2006

http://drupaldocs.org/theme_confirm
http://drupaldocs.org/module_implements

If you are not using the node table, then you shall pass the table name from which you
SELECTing the nodes. For example

<?php
$result = db_query(db_rewrite_sql("SELECT f.nid, f.* from {files} f
WHERE filepath = ’%s’", ’f’), $file);
?>

note the ’f’ parameter of db_rewrite_sql().

Avoid USING because there could be JOINs before it, which will break the USING clause.

Text output
Drupal’s text output was audited and several escaping bugs were found. For more info, see the
check_plain patch.

You need to pay attention that all user-submitted plain-text in your module is escaped using
check_plain() when you output it into HTML. No escaping should be done on data that is going
into the database: only escape when outputting to HTML.

Check_plain() replaces drupal_specialchars() and check_form(), so if you are using any of those
two, you should use check_plain() instead.

You should also wrap user-submitted text in messages with theme(’placeholder’,
$text). For example for "created term %term".

Pay attention in particular to node and comment titles as their behaviour has been changed.
They are now stored as plain-text, like other single-line fields in Drupal and should be escaped
when output. However, the function l() now takes plain-text by default instead of HTML, which
means that whenever $node->title is used as the caption for a link, it will automatically be
escaped. When outputting titles literally, you still have to escape them yourself.

URLs also require attention, as the URL functions (url, request_uri, referer_uri, etc) were
changed to output ’real’ URLs rather than HTML-escaped URLs. When putting any of them
inside an HTML tag attribute (e.g.), you need to pass it through check_url() first.
When putting an URL into HTML outside of a tag or attribute, you can use check_url() or
check_plain(), it doesn’t matter. Don’t use check_url() in situations where a real URL is expected
(e.g. the HTTP "Location: ..." header).

The best test is to submit forms with HTML tags in the plain-text/single-line fields (e.g.
"<u>test</u>"). If the underline tag is not interpreted, but displayed literally, your module is
escaping the text correctly.

Nothing has changed for filtered/rich text, which still uses check_output() like before.

108

15 Jan 2006Drupal Handbook

http://drupal.org/node/18817

Converting 4.6 modules to HEAD
Taxonomy API change
In order to provide more meaningful messages to the user, you are now required to provide
your own when using the taxonomy APIs to create or modify terms and vocabularies. This
applies to taxonomy_save_vocabulary() and taxonomy_save_term().

A status message is returned, which can be either SAVED_NEW, SAVED_UPDATED or
SAVED_DELETED.

This snippet shows you an example of handling this:

<?php
// Drupal 4.6
taxonomy_save_vocabulary($edit);
// Drupal 4.7
switch (taxonomy_save_vocabulary($edit)) {
 case SAVED_NEW:
 drupal_set_message(t(’Created new vocabulary %name.’, array(’%name’
=> theme(’placeholder’, $edit[’name’]))));
 break;
 case SAVED_UPDATED:
 drupal_set_message(t(’Updated vocabulary %name.’, array(’%name’ =>
theme(’placeholder’, $edit[’name’]))));
 break;
 case SAVED_DELETED:
 drupal_set_message(t(’Deleted vocabulary %name.’, array(’%name’ =>
theme(’placeholder’, $deleted_name))));
 break;
}
?>

Table API change
Themes tables sometimes were called with arguments set to NULL or an empty string to
indicate that there were either no rows or no header. This has now to be an empty array.

Change

<?php
theme(’table’, ’’, $rows);
?>
to
<?php
theme(’table’, array(), $rows);
?>

109

Drupal Handbook15 Jan 2006

Check Output change
Due to a security vulnerability discovered earlier in the filter system, we have tightened security
around the check_output() function. The format passed to check_output() is now
checked for access by default. If you don’t want this check, pass FALSE for the third parameter,
$check.

<?php
function check_output($text, $format = FILTER_FORMAT_DEFAULT, $check =
TRUE) {
?>

Note that if you disable the check by passing FALSE, you need to make sure the $format value
has been checked by filter_access() before. filter_access() checks the permissions of
the current user, so it should be checked on submission, not on output.

Join forces
Too often new modules are contributed that do nothing new, only do it in a different way. We
are then stuck with two modules that offer nearly similar functionality, but both do not do it
well enough. This leads to confusion, clutter and a lot of innefficiency.

So please consider the following guidelines or ideas:

Develop and use one central API. do not introduce any new .incs, .modules or other files
with APIS, if there are modules that have these already.
Consult other developers of modules in your domain when you plan to add features, or
plan to add a module. try to agree on features, to avoid overlapping. Nothing is more
confusing for a user when he has, for example a Spam Queue for comments, and a
completely different one for trackbacks, which does not respect the options you set for
comments. Even worse, but certainly not unheard of, is that module Foo breaks module Bar,
because they want to do the same, or want to use the same database tables.
Do not try to duplicate functionality because "you do not really like how its done there"
That only adds clutter. Rather improve the existing one, then introduce yet
another-half-witted-module.

Note that they are not rules or laws. But that respecting them will most often help you and the
community better. For only then will we be able to "stand on the shoulders of Giants" as they say
in Open Source Land. If you keep reinventing wheels, you will be stuck with lots of
incompatible and half finished wheels, in the end. When you use existing wheels and build a car
on top of them, you will be able to get somewhere, one day.

110

15 Jan 2006Drupal Handbook

Reference
This section is intended as a handy reference, collecting things which you may need to look up
as you code to Drupal.

’Status’ field values for nodes and comments
Just documenting the status field for the following tables

NODES

0: not published
1: published

COMMENTS

0: published
1: not published
2: deleted (no longer exists in Drupal 4.5 and above)

Values of ’comment’ field in node table
Here are the values of the ’comment’ field in the node table:

0 = comments cannot be added to this node and published comments will not display
1 = comments cannot be added to this node, but published comments will display
2 = new comments can be added and published comments will display

Module how-to’s
This section collects various ’How-to’ articles of interest to module writers and hackers.

How to write a node module
This information is superseded by the Doxygen documentation. In particular, its example node
module is a good tutorial.

How to write database independent code
In order to ensure that your module works with all compatible database servers (currently
Postgres and MySQL), you’ll need to remember a few points.

When you need to LIMIT your result set to certain number of records, you should use the
db_query_range() function instead of db_query(). The syntax of the two functions is the
same, with the addition of two required parameters at the end of db_query_range(). Those

111

Drupal Handbook15 Jan 2006

http://drupaldocs.org/api/head/file/contributions/docs/developer/examples/node_example.module
http://drupaldocs.org/api/head/file/contributions/docs/developer/examples/node_example.module

parameters are $from and then $count. Usually, $from is 0 and $count is the maximum
number of records you want returned.
If possible, provide SQL setup scripts for each supported database platform. The differences
between each platform are slight - we hope documentation on these differences will be
forthcoming.
You should test any complex queries for ANSI compatibility using this tool by Mimer
If you are developing on MySQL, use it’s ANSI compatibility mode
If you can install all database servers in your environment, it is helpful to create shell
databases in each and then run sample queries in each platform’s query dispatch tool. Once your
query succeeds in all tools, congratulate yourself.
Don’t use ’’ when you mean NULL
Avoid table and field names that might be reserved words on any platform.
Don’t use auto-increment or SERIAL fields. Instead, use an integer field and leverage
Drupal’s own sequencing wrapper: db_next_id(<tablename_fieldname>)

How to write efficient database JOINs
This page is based on an e-mail posted by Craig Courtney on 6/21/2003 to the drupal-devel
mailing list: http://drupal.org/node/view/322.

There are 3 kinds of join: INNER, LEFT OUTER, and RIGHT OUTER. Each requires an ON
clause to let the RDBMS know what fields to use joining the tables. For each join there are two
tables: the left table and the right table. The syntax is as follows:

{left table} {INNER | LEFT | RIGHT} JOIN {right table} ON {join criteria}

An INNER JOIN returns only those rows from the left table having a matching row in the right
table based on the join criteria.

A LEFT JOIN returns ALL rows from the left table even if no matching rows where found in the
right table. Any values selected out of the right table will be null for those rows where no
matching row is found in the right table.

A RIGHT JOIN works exactly the same as a left join but reversing the direction. So it would
return all rows in the right table regardless of matching rows in the left table.

It is recommended that you not use right joins, as a query can always be rewritten to use left
joins which tend to be more portable and easier to read.

With all of the joins, if there are multiple rows in one table that match one row in the other table,
that row will get returned many times.

For example:
Table A
tid, name
1, ’Linux’
2, ’Debian’

112

15 Jan 2006Drupal Handbook

http://developer.mimer.se/validator/index.htm
http://www.mysql.com/doc/en/ANSI_mode.html
http://drupal.org/node/view/322

Table B
fid, tid, message
1, 1, ’Very Cool’
2, 1, ’What an example’

Query 1:
SELECT a.name, b.message FROM a INNER JOIN b ON a.tid = b.tid
Result 1:
Linux, Very Cool
Linux, What an example

Query 2:
SELECT a.name, b.message FROM a LEFT JOIN b ON a.tid = b.tid
Result 2:
Linux, Very Cool
Linux, What an example
Debian, <null>

Hope that helps in reading some of the queries.

How to connect to multiple databases within Drupal
Drupal can connect to different databases with elegance and ease!

First define the database connections Drupal can use by editing the $db_url string in the
Drupal configuration file (settings.php for 4.6 and above, otherwise conf.php). By default only a
single connection is defined

<?php
$db_url = ’mysql://drupal:drupal@localhost/drupal’;
?>

To allow multiple database connections, convert $db_url to an array.

<?php
$db_url[’default’] = ’mysql://drupal:drupal@localhost/drupal’;
$db_url[’mydb’] = ’mysql://user:pwd@localhost/anotherdb’;
$db_url[’db3’] = ’mysql://user:pwd@localhost/yetanotherdb’;
?>

Note that database storing your Drupal installation should be keyed as the default connection.

To query a different database, simply set it as active by referencing the key name.

<?php
db_set_active(’mydb’);
db_query(’SELECT * FROM other_db’);
//Switch back to the default connection when finished.

113

Drupal Handbook15 Jan 2006

db_set_active(’default’);
?>

Make sure to always switch back to the default connection so Drupal can cleanly finish the
request lifecycle and write to its system tables.

How to write themable modules
Note: this page describes Drupal’s theming from the code side of things.

Drupal’s theme system is very powerful. You can accommodate rather major changes in overall
appearance and significant structural changes. Moreover, you control all aspects of your drupal
site in terms of colors, mark-up, layout and even the position of most blocks (or boxes). You can
leave blocks out, move them from right to left, up and down until it fits your needs.

At the basis of this are Drupal’s theme functions. Each theme function takes a particular piece of
data and outputs it as HTML. The default theme functions are all named theme_something()
or theme_module_something(), thus allowing any module to add themeable parts to the
default set provided by Drupal. Some of the basic theme functions include: theme_error()
and theme_table() which as their name suggest return HTML code for an error message and
a table respectively. Theme functions defined by modules include theme_forum_display()
and theme_node_list().

Custom themes can implement their own version of these theme functions by defining
mytheme_something() (if the theme is named mytheme). For example, functions named:
mytheme_error(), mytheme_table(), mytheme_forum_display(),
mytheme_node_list(), etc. corresponding to the default theme functions described above.

Drupal invokes these functions indirectly using the theme() function. For example:

<?php
$node = node_load(array(’nid’ => $nid));
$output .= theme("node", $node);
?>
By default, this will call theme_node($node). However, if the currently active theme is
"mytheme", and this theme has defined a function mytheme_node(), then
mytheme_node($node) will be invoked instead.

This simple and straight-forward approach has proven to be both flexible and fast.

However, because direct PHP theming is not ideal for everyone, we have implemented
mechanisms on top of this: so-called template engines can act as intermediaries between Drupal
and the template/theme. The template engine will override the theme_functions() and stick
the appropriate content into user defined (X)HTML templates.
This way, no PHP knowledge is required and a lot of the complexity is hidden away. More
information about this can be found in the Theme developer’s guide, specifically the Theming
overview.

114

15 Jan 2006Drupal Handbook

http://drupal.org/node/509
http://drupal.org/node/11774
http://drupal.org/node/11774

Theme developer’s guide
This section of our handbook documents aspects of our theme system that will be of interest to
theme developers.

Theming overview
Note: this page describes the theme system from a themer’s perspective. If you are a module coder looking
to make your module themable, you should read this page.

As of version 4.5, Drupal’s theme system is very flexible. The new structure makes it easy to
plug components together to form your theme: templating engines, templates, stylesheets and
PHP.

Here’s how some existing themes are built:

Theme Engine (PHP) Template (XHTML) Style (CSS)

Pushbutton XTemplate .xtmpl .css

Box Grey

PHPTemplate
.tpl.php

.css

Box Cleanslate .css

Bluebeach .tpl.php .css

Chameleon
Chameleon.theme

.css

Marvin .css

A ’theme’ is now an abstract thing, which can be formed in several ways:

PHP .theme file containing overrides for theme_functions: e.g. Chameleon
Template file (.xtmpl, .tpl.php) for a templating engine (XTemplate, PHPTemplate, ...): e.g.
Pushbutton, Bluebeach
Style sheet for an existing template or theme: e.g. Marvin, Box Cleanslate

The directory structure for the example above looks like this:

themes/engines/xtemplate/xtemplate.engine
themes/engines/phptemplate/phptemplate.engine
themes/pushbutton/xtemplate.tmpl
themes/pushbutton/style.css
themes/box_grey/page.tpl.php
themes/box_grey/style.css
themes/box_grey/box_cleanslate/style.css
themes/bluebeach/page.tpl.php

115

Drupal Handbook15 Jan 2006

http://drupal.org/node/306

themes/bluebeach/style.css
themes/chameleon/chameleon.theme
themes/chameleon/style.css
themes/chameleon/marvin/style.css

Themes and templates are placed in their own subdirectory in the themes directory. The theme
engines will scan every subdirectory for template files (.xtmpl, .tpl.php, ...). If a style.css file
is present, it will also be used.

You can also make CSS-only themes by making a subdirectory in any theme directory and
placing a new style.css file in it. Drupal will combine the new stylesheet with the template it
belongs in, and make it available as a new theme. This is how the Marvin and Box Cleanslate
themes work.

Finally, if there is a screenshot.png file in the theme directory, Drupal will show it in the
theme administration screen.

Creating custom themes
If you want to create a custom theme, you can either customize an existing theme or start from
scratch.

To customize an existing theme, just copy it to a new directory in themes, and give it a unique
name. Themes should not have a name that is the same as any of the default modules in Drupal
or any custom modules you might have enabled or configured. Then modify the copy as much
as you want. Depending on whether the theme is template or .theme-file based, you can use
PHP or XHTML/CSS to modify it. As explained above, if you only want to alter the CSS of a
theme, then just place a new style.css file in a subdirectory of the theme: it will appear as a
new theme in Drupal.

If you want to start from scratch, there are several ways to go. If you’re not a programmer, then
the easiest solution is to use one of the template engines. By default, Drupal comes with the
XTemplate theme engine, which requires you to create an (X)HTML skeleton with special
markers. See the XTemplate documentation for more info. There are other template engines
available in the contributions repository (e.g. PHPTemplate).

Drupal themes used to be coded directly in PHP. This method is still available, but is harder to
use and maintain than template-based themes.

PHPTemplate theme engine
PHPTemplate is a theme engine written by Adrian Rossouw (who is also behind the theme
reforms in Drupal 4.5).

It uses individual something.tpl.php files to theme Drupal’s theme_something()
functions. Drupal’s themeable functions are documented on the Development Plumbing site.
Every file contains an HTML skeleton with some simple PHP statements for the dynamic data.

116

15 Jan 2006Drupal Handbook

http://drupal.org/node/6493
http://drupal.org/node/11810
http://drupal.org/node/11795
http://drupal.org/project/phptemplate
http://drupal.org/user/1517/view
http://drupal.org/node/9576
http://drupal.org/node/9576
http://drupaldocs.org/api/4.5/group/themeable
http://drupaldocs.org/

Thus, PHPTemplate is an excellent choice for theming if you know a bit of PHP: with some basic
PHP snippets, you can create advanced themes easily.

If you don’t know PHP, then PHPTemplate can still be a good choice because only small bits of
code are involved. They can just be copy/pasted into your template.

An extended Forum discussion provides some of the reasoning behind the creation of
PHPTemplate.

Installing PHPTemplate
The engine that runs PHPTemplate is not included in the default installation of Drupal. To use
themes that use PHPTemplate (e.g. Box_grey, Kubrick, Persian) you must have the
PHPTemplate engine installed. To set this up:

1. Download the latest release of the PHPTemplate Engine
2. Upload this folder into the drupal_base/themes/engines directory on your site.

You will now be able to use and configure PHPTemplate themes.

Creating a new PHPTemplate
To create a new PHPTemplate, create a new directory under your themes directory, for
example themes/mytheme. Then, you need to create a file called page.tpl.php in that
directory.

This is the only file which is absolutely required. It overrides the theme(’page’) function,
which outputs the final page contents, along with all the extra decorations like a header, tabs,
breadcrumbs, sidebars and a footer.

You can create files to override the following functions:

theme(’page’) (page.tpl.php): theme a page
theme(’block’) (block.tpl.php): theme a block in sidebar
theme(’box’) (box.tpl.php): theme a generic container for the main area
theme(’comment’) (comment.tpl.php): theme a comment
theme(’node’) (node.tpl.php): theme a node

The PHPTemplate package contains example template files for most of these, see box_grey for
an example of page.tpl.php. Simply copy them into your theme/mytheme directory and edit
them. Note that you will need to visit administer > themes for PHPTemplate to refresh its cache
and recognize any new .tpl.php files.

If you want to theme a function other than the defaults listed here, you need to provide an
override yourself.

117

Drupal Handbook15 Jan 2006

http://drupal.org/node/7133
http://drupal.org/project/box_grey
http://drupal.org/node/13952
http://drupal.org/node/14531
http://drupal.org/project/phptemplate
http://drupal.org/node/11812
http://drupal.org/node/11813
http://drupal.org/node/11814
http://drupal.org/node/11815
http://drupal.org/node/11816
http://drupal.org/node/11811
http://drupal.org/node/11811

Block.tpl.php
Lays out content for blocks (left and/or right side of page). This template is optional, and can be
overridden by copying the default template and modifying it.

Available variables
$block (object)

$block->module : The name of the module that generated the block.
$block->delta : The number of the block, in the module.
$block->subject : The block title.
$block->content : The html content for the block.
$block->status : Status of block (0, or 1).
$block->path : The path that matches whether or not a block is displayed.
$block->region : Left (0), or Right(1) column.
$block->throttle: Throttle setting.

$seqid : The sequential id of the block displayed, ie: The first block is 1, the second block is 2
etc.
$block_seqid : The same as $seqid, but is reset for the left and right sidebars.
$zebra : Wether or not the block is odd , or even. This is useful for creating ’zebra stripes’
with your css. This value will be either ’odd’, or ’even’.
$block_zebra : The same as $zebra, but is reset for the left and right sidebars.

Default template
The default block.tpl.php, which can be found at
themes/engines/phptemplate/block.tpl.php.

<div class="<?php print "block block-$block->module" ?>" id="<?php
print "block-$block->module-$block->delta"; ?>">
 <h2><?php print $block->subject ?></h2>
 <div class="content"><?php print $block->content ?></div>
</div>

Box.tpl.php
Prints a simple html box around a page element. For instance: The comment view options are
surrounded by box.tpl.php.

Available variables
$title: The title of the box.
$content: The content of the box.
$region: Region. main, left or right.

118

15 Jan 2006Drupal Handbook

Default template
<div class="box">
 <h2><?php print $title ?></h2>
 <div class="content"><?php print $content ?></div>
</div>

Comment.tpl.php
Define the HTML for a comment block. This doesn’t have anything to do with comment
threading, just the actual comment.

Available variables
$new : Translated text for ’new’, if the comment is infact new.
$comment(object) : Comment object as passed to the theme_comment function.
$submitted : Translated post information string.
$title : Link to the comment title.
$picture : User picture HTML (include <a> tag.) , if display is enabled and picture is set.
$links : Contextual links below comment.
$content : Content of link.
$author : Link to author profile.
$date : Formatted date for post.

Default template
<div class="comment <?php print ($comment->new) ? ’comment-new’ : ’’
?>">
<?php if ($comment->new) : ?>

 <?php print $new ?>
<?php endif; ?>
<div class="title"><?php print $title ?></div>
 <?php print $picture ?>
 <div class="author"><?php print $submitted ?></div>
 <div class="content"><?php print $content ?></div>
 <?php if ($picture) : ?>
 <br class="clear" />
 <?php endif; ?>
 <div class="links"><?php print $links ?></div>
</div>

119

Drupal Handbook15 Jan 2006

Node.tpl.php
This template controls the display of a node, and a node summary.

Available variables
$title : Title of node.
$node_url : Link to node.
$terms : HTML for taxonomy terms.
$name : Formatted name of author.
$date : Formatted data.
$sticky : True if the node is sticky on the front page.
$picture : HTML for user picture, if enabled.
$content : Node content, teaser if it is a summary.
$links : Node links.
$taxonomy (array) : array of taxonomy terms.
$node (object) : The node object.
$main : This variable is set to 1 if the node is being displayed on the main page, 0 otherwise.
$page : True if on the node view page, and not a summary.
$submitted : Translated text, if the node info display is enabled for this node type.

Default template
<div class="node<?php print ($sticky) ? " sticky" : ""; ?>">
 <?php if ($page == 0): ?>
 <h2><a href="<?php print $node_url ?>" title="<?php print $title
?>"><?php print $title ?></h2>
 <?php endif; ?>
 <?php print $picture ?>
 <div class="info"><?php print $submitted ?><?php
print $terms ?></div>
 <div class="content">
 <?php print $content ?>
 </div>
<?php if ($links): ?>
 <?php if ($picture): ?>
 <br class=’clear’ />
 <?php endif; ?>
 <div class="links"><?php print $links ?></div>
<?php endif; ?>
</div>

120

15 Jan 2006Drupal Handbook

Theme distinct node types differently
You can easily use PHPTemplate to produce specialized themes for specific node types. For
example, to theme forum posts seperatly from your other nodes, use node-forum.tpl.php. This
will work for any node type.

Here is the basic template.
node-<node type>.tpl.php

Page.tpl.php
This template defines the main skeleton for the page.

Available variables
head_title: The text to be displayed in the page title.
language: The language the site is being displayed in.
site: The name of the site, always filled in.
head: HTML as generated by drupal_get_html_head() (needed to dynamically add scripts
to pages)
onload_attributes: Onload tags to be added to the head tag, to allow for autoexecution of
attached scripts.
directory: The directory the theme is located in , ie: themes/box_grey or
themes/box_grey/box_cleanslate
logo: The path to the logo image, as defined in theme configuration.
site_name: The site name of the site, to be used in the header, empty when display has been
disabled.
site_slogan: The slogan of the site, empty when display has been disabled.
search_box: True(1) if the search box has been enabled.
search_url: URL the search form is submitted to.
search_button_text: Translated text on the search button.
search_description: Translated description for the search button.
title: Title, different from head_title, as this is just the node title most of the time.
primary_links (array): An array containing the links as they have been defined in the
phptemplate specific configuration block.
secondary_links (array): An array containing the links as they have been defined in the
phptemplate specific configuration block.
breadcrumb: HTML for displaying the breadcrumbs at the top of the page.
tabs: HTML for displaying tabs at the top of the page.
messages: HTML for status and error messages, to be displayed at the top of the page.
layout: This setting allows you to style different types of layout (’none’, ’left’, ’right’ or
’both’) differently, depending on how many sidebars are enabled.
help: Dynamic help text, mostly for admin pages.
styles: Required for stylesheet switching to work. This prints out the style tags required.
mission: The text of the site mission.

121

Drupal Handbook15 Jan 2006

is_front: True if the front page is currently being displayed. Used to toggle the mission.
sidebar_left: The HTML for the left sidebar.
content: The HTML content generated by Drupal to be displayed.
sidebar_right: The HTML for the right sidebar.
footer_message: The footer message as defined in the admin settings.
closure: Needs to be displayed at the bottom of the page, for any dynamic javascript that
needs to be called once the page has already been displayed.

Default template
Here is the contents of the box_grey template’s page.tpl.php, to give you an idea of the
layout of the file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
 <title><?php print $title ?></title>
 <meta http-equiv="Content-Style-Type" content="text/css" />
 <?php print $head ?>
 <?php print $styles ?>
</head>
<body <?php print theme("onload_attribute"); ?>>
<div id="header">
 <?php if ($search_box): ?>
 <form action="<?php print url("search") ?>" method="post">
 <div id="search">
 <input class="form-text" type="text" size="15" value=""
name="keys" /><input class="form-submit" type="submit" value="<?php
print t("Search")?>" />
 </div>
 </form>
 <?php endif; ?>
 <?php if ($logo) : ?>
 <a href="<?php print url() ?>" title="Index Page"><img src="<?php
print($logo) ?>" alt="Logo" />
 <?php endif; ?>
 <?php if ($site_name) : ?>
 <h1 id="site-name"><a href="<?php print url() ?>" title="Index
Page"><?php print($site_name) ?></h1>
 <?php endif;?>
 <?php if ($site_slogan) : ?>
 <?php print($site_slogan) ?>
 <?php endif;?>
 <br class="clear" />
</div>

122

15 Jan 2006Drupal Handbook

<div id="top-nav">
 <?php if (is_array($secondary_links)) : ?>
 <ul id="secondary">
 <?php foreach ($secondary_links as $link): ?>
 <?php print $link?>
 <?php endforeach; ?>

 <?php endif; ?>
 <?php if (is_array($primary_links)) : ?>
 <ul id="primary">
 <?php foreach ($primary_links as $link): ?>
 <?php print $link?>
 <?php endforeach; ?>

 <?php endif; ?>
</div>
<table id="content">
 <tr>
 <?php if ($sidebar_left != ""): ?>
 <td class="sidebar" id="sidebar-left">
 <?php print $sidebar_left ?>
 </td>
 <?php endif; ?>
 <td class="main-content" id="content-<?php print $layout ?>">
 <?php if ($title != ""): ?>
 <h2 class="content-title"><?php print $title ?></h2>
 <?php endif; ?>
 <?php if ($tabs != ""): ?>
 <?php print $tabs ?>
 <?php endif; ?>
 <?php if ($mission != ""): ?>
 <p id="mission"><?php print $mission ?></p>
 <?php endif; ?>
 <?php if ($help != ""): ?>
 <p id="help"><?php print $help ?></p>
 <?php endif; ?>
 <?php if ($messages != ""): ?>
 <div id="message"><?php print $messages ?></div>
 <?php endif; ?>
 <!-- start main content -->
 <?php print($content) ?>
 <!-- end main content -->
 </td><!-- mainContent -->
 <?php if ($sidebar_right != ""): ?>
 <td class="sidebar" id="sidebar-right">
 <?php print $sidebar_right ?>
 </td>

123

Drupal Handbook15 Jan 2006

 <?php endif; ?>
 </tr>
</table>
<?php if ($breadcrumb != ""): ?>
 <?php print $breadcrumb ?>
<?php endif; ?>
<div id="footer">
 <?php if ($footer_message) : ?>
 <p><?php print $footer_message;?></p>
 <?php endif; ?>
Validate XHTML or
CSS.
</div><!-- footer -->
 <?php print $closure;?>
 </body>
</html>

Alternative templates for different node types
There are times when you may want to create a static page within Drupal such as an "about"
page, help pages and the like. Obviously for these, you don’t want the title, author links, or
indeed anything except the page content.

To accomplish this, copy your node.tpl.php to node-$type.tpl.php. In the case of a static page,
you would copy your node.tpl.php file to node-page.tpl.php.

The path module will then allow you to type in "clean URLs" like "about", "bio", etc.

This feature was added to the last release of the 4.5 release of PHPTemplate, so make sure that
your phptemplate is current if this doesn’t work for you.

Example - Theming flexinode
Since it took me a while to make sense of this I thought I would post an example to help others
along the way. It’s actually quite simple, just not very intuitive.

This example is for changing the way that the flexinode ’date/time’ field will display on a page.
(I only wanted month and year to show). But could very easily be adapted to other things.

My theme is called ’licc’ - it is a phptemplate theme.

The Quick Version
In the directory for your phptemplate theme (this could be an existing or custom theme), create
the following 2 files. For me the files were put in ’themes/licc’.

124

15 Jan 2006Drupal Handbook

Create template.php
Something like this:

<?php
/**
* Override theme_flexinode_timestamp() from
modules/flexinode/field_timestamp.inc
*/
function phptemplate_flexinode_timestamp($field_id, $label, $value,
$formatted_value) {
 // nothing happens here.
 return _phptemplate_callback(’flexinode_timestamp’, array(’field_id’
=> $field_id, ’label’ => $label, ’value’ => $value, ’formatted_value’
=> $formatted_value));
}
?>

Create flexinode_timestamp.tpl.php
Something like this:

<?php
$formatted_value = strftime ("%B %Y", $value); // format as Month and
Year, eg. ’July 2004’
?>
<div class="flexinode-timestamp-<?php print $field_id; ?>">
<?php print $label; ?>:

<?php print $formatted_value; ?>
</div>

That’s it! Just modify the second file so that the field is displayed the way you would like.

Note: that you will need to visit administer > themes for PHPTemplate to refresh its cache and
recognize any new .tpl.php files.

Below is the long-winded version, read on if you are interested...

The Long Version

1. find the theme function for the flexinode field
Found in modules/flexinode/field_timestamp.inc

<?php
function theme_flexinode_timestamp($field_id, $label, $value,
$formatted_value) {

125

Drupal Handbook15 Jan 2006

 $output = theme(’form_element’, $label, $formatted_value);
 $output = ’<div class="flexinode-timestamp-’. $field_id .’">’.
$output .’</div>’;
 return $output;
}
?>

This is just for reference, you could just as easily look in the API documentation. Core
documentation is here:
http://drupaldocs.org/api/head/group/themeable
(only core modules seem to be online at the moment, so you will need to search through the
code for any add-on modules like flexinode)

If you wanted to theme flexinode ’image’ fields, you would need to look for the theme function
in modules/flexinode/field_image.inc

2. Create template.php and add override function
For my theme I created themes/licc/template.php and then copied the function declaration
from above replacing the word ’theme’ with ’phptemplate’.

<?php
function phptemplate_flexinode_timestamp($field_id, $label, $value,
$formatted_value) {
}
?>

add in the phptemplate callback:

<?php
return _phptemplate_callback(’flexinode_timestamp’, array(’field_id’ =>
$field_id, ’label’ =>
$label, ’value’ => $value, ’formatted_value’ => $formatted_value));
?>

This function doesn’t really _do_ anything except give phptemplate control over the display of
this field, the next step looks after the actual formatting. Note how the variables are passed on to
the _phptemplate_callback() in an associative array.

Note: do not use the key ’file’ in the callback array, as it causes problems for phptemplate. This
is a value used for the image field in particular. This is what I did (for the image field) to get
around this problem (see ’imgfile’ used instead of ’file’)

<?php
/**
* Override theme_flexinode_image() from
modules/flexinode/field_image.inc
*/

126

15 Jan 2006Drupal Handbook

http://drupaldocs.org/api/head/group/themeable

function phptemplate_flexinode_image($field_id, $label, $file,
$formatted_value) {
 // empty ’stub’ function
 return _phptemplate_callback(’flexinode_image’, array(’field_id’ =>
$field_id, ’label’ => $la
bel, ’imgfile’ => $file, ’formatted_value’ => $formatted_value));
}
?>

3. Create flexinode_timestamp.tpl.php to do formatting
This goes in your theme directory (for me themes/licc/flexinode_timestamp.tpl.php). As you
can see the name matches the bit after ’phptemplate_’ in the theme override function, and the
first argument of the _phptemplate_callback().

Put the HTML/PHP that you want in this file for the display of all date/time (timestamp) fields
in all flexinode pages.

Something like this:

<div class="flexinode-timestamp-<?php print $field_id; ?>">
<?php print $label; ?>:

<?php print $formatted_value; ?>
</div>

Example Files

template.php
<?php
/***
* template.php
*
* This file contains functions for over-riding the default theme
functions
* in Drupal core and modules (look at the API documentation for more
info).
* The functions don’t actually _do_ anything, except pass the variables
* available to phptemplate for use in the *.tpl.php files.
*
* Add similar ’stub’ functions to override other default theme
functions.
*/
/**
* Override theme_flexinode_timestamp() from
modules/flexinode/field_timestamp.inc
*/

127

Drupal Handbook15 Jan 2006

function phptemplate_flexinode_timestamp($field_id, $label, $value,
$formatted_value) {
 // like I said, nothing happens here.
 return _phptemplate_callback(’flexinode_timestamp’, array(’field_id’
=> $field_id, ’label’ => $label, ’value’ => $value, ’formatted_value’
=> $formatted_value));
}
?>

flexinode_timestamp.tpl.php
<?php
/***
* Customised formatting of flexinode timestamp data in nodes.
* These fields are available:
* $field_id, $label, $value, $formatted_value
**/
// Change the default $formatted_value so that it suits me (no time or
day)
$formatted_value = strftime ("%B %Y", $value); // format as Month and
Year, eg. ’July 2004’
?>
<div class="flexinode-timestamp-<?php print $field_id; ?>">
<?php print $label; ?>:

<?php print $formatted_value; ?>
</div>

Making additional variables available to your templates
Examples from this forum discussion. The $hook refers to the area the variable is to be used in
(e.g. for comment.tpl.php, it would be "comment").

This function needs to be defined in a template.php file, which is placed inside the template
directory (for instance : themes/box_cleanslate/template.php)

Note: For these changes to take effect, you need to load the admin/themes page first.

<?php
function _phptemplate_variables($hook, $vars) {
 switch($hook) {
 case ’comment’ :
 $vars[’newvar’] = ’new variable’;
 $vars[’title’] = ’new title’;
 break;
 }
 return $vars;
}

128

15 Jan 2006Drupal Handbook

http://drupal.org/node/14629

?>

The output of this function is merged with the variables returned from phptemplate_comment,
so you can easily adjust whichever variables you feel necessary.

Your comment.tpl.php file will now have a new variable available in it
called $newvar. Similarly the $title variable will be overridden with the value specified in
the function.

A neat trick is to count how many times each of the hooks is called, so you can pass an extra
variable. re :

<?php
function _phptemplate_variables($hook, $vars) {
 static $count;
 $count = is_array($count) ? $count : array();
 $count[$hook] = is_int($count[$hook]) ? $count[$hook] : 1;
 $vars[’zebra’] = ($count[$hook] % 2) ?’odd’ : ’odd’;
 $vars[’seqid’] = $count[$hook]++;
 return $vars;
 }
?>

That is ’even’ if it is an even number, and ’odd’ if it is odd. This means you do zebra striping (ie:
alternating colors) for each of your nodes / blocks / comments / whatever.

Then you can set up a some styles for class=’$zebra’ , which handle the alternating colors.

Another example is a flag to show us if we are looking at a node. Might be handy for rendering
items different, when someone is looking at an article.

<?php
function _phptemplate_variables($hook, $vars) {
 switch ($hook) {
 case ’page’:
 if (arg(0) == ’node’ && is_numeric(arg(1)) && arg(2) == ’’) {
 $vars[’content_is_node’] = TRUE;
 }
 break;
 }
 return $vars;
}
?>
Note that the switch is kind of obsolete here, but i leave it here, because you might want to add
more variables. In that case you need them.

129

Drupal Handbook15 Jan 2006

The args() checks will see if you have an url like /node/NID/ and not like /node/NID/edit or
/node. If that is found, we set the flag TRUE.

Overriding other theme functions
If you want to override a theme function not included in the basic list (block, box, comment,
node, page), you need to tell PHPTemplate about it.

To do this, you need to create a template.php file in your theme’s directory. This file should
contain the required <?php ?> tags, along with stubs for the theme overrides. These stubs
instruct the engine what template file to use and which variables to pass to it.

First, you need to locate the appropriate theme function to override. You can find a list of these
in the API documentation. We will use theme_item_list() as an example.

The function definition for theme_item_list() looks like this:

<?php
function theme_item_list($items = array(), $title = NULL) {
?>

Now you need to place a stub in your theme’s template.php, like this:

<?php
/**
* Catch the theme_item_list function, and redirect through the template
api
*/
function phptemplate_item_list($items = array(), $title = NULL) {
 // Pass to phptemplate, including translating the parameters to an
associative array. The element names are the names that the variables
 // will be assigned within your template.
 return _phptemplate_callback(’item_list’, array(’items’ => $items,
’title’ => $title));
}
?>

We replaced the word theme in the function name with phptemplate and used a call to
_phptemplate_callback() to pass the parameters ($items and $title) to PHPTemplate.

Now, you can create a item_list.tpl.php file in your theme’s directory, which will be used
to theme item lists. This function should follow the same logic as the original
theme_item_list().

Note that you will need to visit admininster > themes for PHPTemplate to refresh its cache and
recognize the new file. Beginning with version 4.6, this is not necessary anymore.

130

15 Jan 2006Drupal Handbook

http://drupaldocs.org/api/head/group/themeable
http://drupaldocs.org/api/head/function/theme_item_list

Example - Overriding the user profile pages using PHPTemplate
This description Illustrates how easy it is to override theme functions. I’m very very new to php
and sql, but even I managed to work out how to customize how user profile pages appear by
overriding the theme function.

Before

This is how the out-of-the-box user profile looks like, with extra profile fields, such as City,
Country, Postcode, Position etc. added in. (please note that i couldn’t fit the whole page into the
one screenshot..there is an extra "background/more info." field that doesn’t show in the BEFORE
screen shot.

click to view the BEFORE screenshot in a new window

After

This is how the exact same user profile looks after overriding the theme and applying a simple
user_profile.tpl.php file in my theme directory.

click to view the AFTER screenshot in a new window

More details & discussion on this is in the original forum post.

Not including drupal.css
You can overridde the theme_stylesheet_import function and omit drupal.css. Simply add
this to your theme’s template.php file:

<?php
function phptemplate_stylesheet_import($stylesheet, $media = ’all’) {
 if ($stylesheet != ’misc/drupal.css’) {
 return theme_stylesheet_import($stylesheet, $media);
 }
}
?>

of course, you may include your own version of drupal.css here but that’s the basic idea.

Protecting content from anonymous users when using overrides
This is a useful tip, especially for designers or newbies to php who want to unleash the power of
drupal & the power of CSS, layouts while protecting content intended for Logged In users only.

131

Drupal Handbook15 Jan 2006

http://www.m3m.eu.com/drupal-stuff/before.png
http://www.m3m.eu.com/drupal-stuff/after.png
http://drupal.org/node/14466#comment-26027

Using PHPTemplate Overrides with protected content

PHPtemplate is superb, in my opinion. I particularly like the ability to override specific layouts,
but, when you override the theme function you also override/bypass permission settings -- it
doesn’t pass through any user access layer in Drupal. Which is important to know if your
drupal site has content that is intended for logged in users only.

Example

In the example below, I wanted to override the way a User Profile is displayed.

Access to view User Profiles was set under ADMINISTER -> USERS -> CONFIGURE ->
PERMISSIONS so that only logged in Users could view a user profile.

After the page layout override was implemented, anyone could see profile pages by guessing a
link like ?=user/989 for example.

Solution

To get around that problem (and after a lot of playing around) I came up with the following
solution, i.e. check to see if the user is logged in BEFORE invoking your phptemplate override.
It’s remarkably simple, now that I have worked it out, but, I thought it would be worth sharing
on here as there maybe other drupal site administrators like me who are as thick as a plank of
wood and do not have a lot of experiece in PHP programming.

I have pasted example code below that goes in the template.php file in the themes folder which
invokes an override and loads a custom user_profile.tpl.php which overrides the way a user
profile is displayed.

<?php
/**
* check if the user is logged in before invoking the template override
*/
global $user;
if($user->uid) // check to see if the user is logged in
{
function phptemplate_user_profile($user, $fields = array()) {
 // Pass to phptemplate, including translating the parameters to an
associative array. The element names are the names that the variables
 // will be assigned within your template.
 /* potential need for other code to extract field info */
return _phptemplate_callback(’user_profile’, array(’user’ => $user,
’fields’ => $fields));
 }
}
?>

132

15 Jan 2006Drupal Handbook

Themeing front page and others
One weakness of many Drupal sites is the sameness of the pages. The sections.module allows the
admin to assign different themes to different areas of the site, but for a site with custom themes
this requires duplication of a lot of resources such as css and image files into separate theme
directories.

FactoryJoe recently turned me onto a great trick for getting much of the sections.module
functionality into a single phptemplate theme.

Probably the easiest and most common use is to give the home (a.k.a. front) page an entirely
different layout. It turns out that this is really easy to do. Here’s how:

1. Create your home page theme template using the techniques described elsewhere in this
manual. Call this file "home.tpl.php" and place it into the directory for the theme you’re
developing.

2. Create your second-level page template and call it "page.tpl.php". But, here’s the trick, at the
very top of the file, before the doctype declaration or anything, add this code:

<?php
if ($is_front) {
 include(’home.tpl.php’);
 return;
}
?>

This checks phptemplate’s $is_front variable and if it is true, the home.tpl.php file is imported
and the ’return’ line keeps the rest of the page.tpl.php code from executing.

This technique can be extended to other areas of the site by substituting other tests for $is_front.
For instance you could retheme the entire administration area, by using the following:

<?php
if ($is_front) {
 include(’home.tpl.php’);
 return;
}
elseif (arg(0)=="admin") {
 include(’admin.tpl.php’);
 return;
}
?>

Find more information about Drupal’s arg() function here.

133

Drupal Handbook15 Jan 2006

http://drupal.org/project/sections
http://drupal.org/user/11639/view
http://drupaldocs.org/api/head/function/arg

Note that there shouldn’t be a line break before the DOCTYPE declaration, so you should
immediately follow both examples with the doctype line. Example:

<?php
// code //
return;
} ?><!DOCTYPE HTML PUBLIC "-//W3C//DTD HT... etc...

XTemplate to PHPTemplate conversion
Firstly rename the xtemplate.xtmpl file to original.xtmpl so that the theme is no longer a
xtemplate theme.

Creating page.tpl.php

1. copy original.xtmpl to page.tpl.php
2. Remove the node, comment, box, and block sections. In the place of these sections add the

following code
<?php echo $content ?>

3. Change all the "{" characters to "<?php print $"
4. Change all the "}" characters to "; ?>"
5. Change the "$footer" to "$closure"
6. Change "$message" to "$messages"
7. As the primary and secondary links in phptemplate are arrays you will need to change

them from "echo $primary_links;" to "echo theme(’links’, $primary_links);". Also the same
needs to be done for secondary links.

8. In the blocks section we need to change the $block to either $sidebar_left or $sidebar_right
depending on which side of the content it is on.

Creating node.tpl.php

1. Copy the node section from the original.xtmpl to a new file node.tpl.php
2. As before change all the "{" and "}" characters to "<?php print $" and "; ?>" respectively.
3. change $link to $node_url.
4. Change "$taxonomy" to "$terms"
5. Change "print $sticky;" to "if ($sticky) { print " sticky"; }"
6. Change "print $picture;" to "if ($picture) { print $picture; }"

Creating comment.tpl.php

1. Copy the comment section from the original.xtmpl to a new file comment.tpl.php
2. As before change all the "{" and "}" characters to "<?php print $" and "; ?>" respectively.
3. Change "print $picture;" to "if ($picture) { print $picture; }"

134

15 Jan 2006Drupal Handbook

Also just to be clean, you may want to change the displaying of the new so it will only show
when the $new != ’’

Create block.tpl.php

1. Copy the block section from the original.xtmpl to a new file comment.tpl.php
2. As before change all the "{" and "}" characters to "<?php print $block->" and "; ?>"

respectively.
3. Then change the $block->title to $block->subject.

Create box.tpl.php

1. Copy the box section from the original.xtmpl to a new file comment.tpl.php
2. As before change all the "{" and "}" characters to "<?php print $" and "; ?>" respectively.

XTemplate theme engine
The XTemplate theme system uses templates to layout and style Web pages. It separates logic
(PHP), structure (XHTML/HTML), and style (CSS), making it easy for designers to create or
modify templates by working on XHTML/HTML and CSS without having to worry about any
PHP coding.

XTemplate templates are directories, which contain all the XHTML/HTML, CSS, image and
JavaScript files that a template uses. Templates are located in the themes directory of a Drupal
installation:

/themes/

Once a template exists in the themes directory, XTemplate auto-detects it, and makes it available
for selection to administrators:

administer -> themes

Drupal is distributed with two XTemplate templates included - Bluemarine and Pushbutton.

Although XTemplate is still supported as part of the core, it may not be in the future, for several
reasons. This will not necessarily mean the end of XTemplate since it may be maintained as an
alternative contributed engine like PHPTemplate.

Creating a new XTemplate
To make a new XTemplate template, create a directory in your Drupal installation at this
location:

/themes/

135

Drupal Handbook15 Jan 2006

http://drupal.org/node/9292
http://drupal.org/node/9292

Whatever you name the new directory will be used as the name of your new template, for
instance:

/themes/rembrant

Once you create a template in this directory, it will appear on the theme selection page as the
"rembrant" template.

The easiest way to create a new template is to make a copy of an existing template, such as
Default or Pushbutton, and start making changes to the files.

The only file required in a template directory is xtemplate.xtmpl, which is a regular HTML or
XHTML file containing some XTemplate tags that Drupal substitutes with content when a page
is served. The xtemplate.xtmpl file can be edited in DreamWeaver, GoLive, BBEdit or any other
application you use to work on HTML/XHTML.

All other files in the template are optional, and are linked to from the xtemplate.xtmpl file. These
can include CSS, image or JavaScript files, and should all be included in the template directory
to make the template easy to maintain and portable between Drupal installations.

Note that if you name your stylesheet style.css, it will automatically be picked up by Drupal,
and you will not need to add an explicit @import or <link /> for it. If you make a
subdirectory within your template, containing another style.css file, then the subdirectory
becomes a new theme, using the XHTML from the first template, but with a different stylesheet.

Template basics
xTemplate creates Web pages by substituting place holder tags in a template, the
xtemplate.xtmpl file, with content from the database.

There are two kinds of template place holder tags, section tags and item tags.

Section Tags
Section tags deal with the structure of a Web page, marking areas of the page, and are
XHTML/HTML comment tags which look like this:

<!-- BEGIN: title -->

<!-- END: title -->

Some section tags mark areas were the content, and it’s structure, will be repeated. For instance
the comment section may be repeated more than once depending on how many comments are
on a page:

<!-- BEGIN: comment -->

136

15 Jan 2006Drupal Handbook

<!-- END: comment -->

Section tags can be nested, so that one set of section tags can be contained by annother:

<!-- BEGIN: node -->

 <!-- BEGIN: title -->

 <!-- END: title -->

<!-- END: node -->

Item Tags
Item tags are place holders for content items, such as the title of a page, who the page was
submitted by, or the main content of a page. Item tags look like this:

{title}

{submitted}

{content}

Item tags are associated with the section tag that surrounds them, for instance:

<!-- BEGIN: node -->
{title}
<!-- END: node -->

The {title} tag above is the main title of a page, while the {title} tag below is the title for the
comments on a page.

<!-- BEGIN: comment -->
{title}
<!-- END: comment -->

Header section
The Section
The xTemplate Header section starts and ends with these tags

<!-- BEGIN: header -->

<!-- END: header -->

Don’t confuse the Header section with the XHTML/HTML <head> element. Although the
<head> element is included in the Header section, it also holds the top part of the Web page -
the area designers usualy refer to as the "Header", which usually consists of a horizontal bar
with the site’s logo and some navigation links.

137

Drupal Handbook15 Jan 2006

Prolog
The WC3 recommends that all XHTML documents should start with an XML prolog specifying
the encoding of the document, for instance:

<?xml version="1.0" encoding="utf-8"?>

Unfortunately there are many browsers that handle the XML prolog badly, and either crash, fail
to display the page, or display it incorrectly. It is therefore recommended to leave out the XML
prolog, and specify encoding in a Content-Type element in the <head> of your template (which
Drupal does automatically).

DOCTYPE
The DOCTYPE element tells a browser two things, which XML language the document is using,
and where the DTD (Document Type Declaration) of that language is located.

This is an example of a DOCTYPE element:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

There should be absolutely nothing in your document before the DOCTYPE or XML prolog. The
xTemplate tag <!-- BEGIN: header --> is OK, as it will be removed by Drupal before sending the
page to the browser, but make sure to remove spaces or line breaks between this and the
DOCTYPE or XML prolog elements, or you may get unexpected results in some browsers.

To learn more about the DOCTYPE element, and which version would suit your needs best,
read:

Fix Your Site With the Right DOCTYPE!
by Jeffrey Zeldman

{head_title}
Content of the <title> element. Used as the window title by browsers, and as the page title in
search engine listings.

{head}
Filled in with the following:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<base href="http://yoursite.com/" />
<style type="text/css" media="all">
@import url(misc/drupal.css);
</style>

138

15 Jan 2006Drupal Handbook

http://www.alistapart.com/articles/doctype/

{styles}
Declarations for the current style:

<style type="text/css" media="all">@import "themes/bluemarine/style.css";</style>

Add this tag to allow your template to take advantage of the Drupal theme system’s
style-switching ability. Note that, if you have a default stylesheet, it should be named
style.css and be located in the same directory as your xtemplate.xtmpl file.

{onload_attributes}
The page attributes for the <body> tag.

{logo}
The logo section begins and ends with these tags:

<!-- BEGIN: logo -->

<!-- END: logo -->

The filename for the site logo, configurable by the Administrator in the text box in the Drupal
theme administration section. (Display of this item is optional.)

{site_name}
The site name section begins and ends with these tags:

<!-- BEGIN: site_name -->

<!-- END: site_name -->

The current site name, configured by the Administrator in the text box "Name" on Drupal page:

administer->settings

(Display of this item is optional.)

{site_slogan}
The site slogan section begins and ends with these tags:

<!-- BEGIN: site_slogan -->

<!-- END: site_slogan -->

The current site slogan, configured by the Administrator in the text box "Slogan" on Drupal
page:

139

Drupal Handbook15 Jan 2006

administer->settings

(Display of this item is optional.)

{secondary_links} {primary_links}
These tags hold whatever the Administrator inputs into the text boxes "Secondary links:" and
"Primary links" in the Drupal theme administration section. If the Administrator does not
specify any "Primary links", Drupal will automatically generate a set of links based on the
currently-enabled modules.

The Administrator could use these tags to input links to the main sections of the site, the title of
the site, a site message, an image or anything else they require.

Search Box
The Search Box section begins and ends with these tags:

<!-- BEGIN: search_box -->

<!-- END: search_box -->

{search_url}
The form action: "search"

{search_description}
The alt text description of the search text box: "Enter the terms you wish to search for."

{search_button_text}
The value of the search submit button: "Search"

Mission
The Mission section begins and ends with these tags:

<!-- BEGIN: mission -->

<!-- END: mission -->

{mission}
The text of the site mission statement, appears only on the Home Page, and is configured by the
Administrator in the text box "Mission" on Drupal page:

140

15 Jan 2006Drupal Handbook

administer->settings

Title
The Title section begins and ends with these tags:

<!-- BEGIN: title -->

<!-- END: title -->

{title}
The title of the node

Tabs
The Tabs section begins and ends with these tags:

<!-- BEGIN: tabs -->

<!-- END: tabs -->

{tabs}
Draws the Drupal "local tasks" for the current page.

{breadcrumb}
The breadcrumb trail of the page, the path from Home Page to the current page.

Help
The Help section begins and ends with these tags:

<!-- BEGIN: help -->

<!-- END: help -->

{help}
Contains any help information which exists for a particular page.

Message
The Message section begins and ends with these tags:

<!-- BEGIN: message -->

141

Drupal Handbook15 Jan 2006

<!-- END: message -->

Message appears when Drupal confirms the results of an action by the user, for instance after
updating or deleting a page.

{message}
The text of the message.

Node section
The Node Section
The node section (xtemplate.xtmpl) contains the main content of the page, and begins and ends
with these tags:

<!-- BEGIN: node -->

<!-- END: node -->

{sticky}
Sets the class to "node sticky" if a node is "stickied" at the top of lists. (i.e. if a teaser for the page
is always to be displayed on the home page) If the node has not been set to be sticky, the class is
set to "node ".

Picture
Picture contains an image representing the user who posted the content of a node, the image is
linked to the poster’s profile. This is also sometimes called an "avatar". Picture begins and ends
with these tags:

<!-- BEGIN: picture -->

<!-- END: picture -->

{picture}
Outputs the following:

<img src="http://www.yoursite/files/pictures/picture-1.gif"
alt="Username’s picture" />

142

15 Jan 2006Drupal Handbook

Title
The title of the main content of the page (node), tags begin and end:

<!-- BEGIN: title -->

<!-- END: title -->

On a node page, the title is output as:

<h1 class="title">Node Title</h1>

On the Home Page, each node title is output as:

<h2 class="title"><a href="node/31"
>Node Title</h2>

{link}
Outputs the link to the node , "node/31" in the example above.

{title}
Outputs the text of the node title, "Node Title" in the example above.

{submitted}
The username of the person who submitted the node content, outputs:

Submitted by <a href="user/1" title="View user profile."
>Username on 16 February, 2004 - 23:46.

Taxonomy
A list of links to taxonomies which the node belongs to, tags begin and end:

<!-- BEGIN: taxonomy -->

<!-- END: taxonomy -->

{taxonomy}
Outputs a taxonomy term that the node belonds to:

Taxonomy Term

143

Drupal Handbook15 Jan 2006

{content}
The main content of the node.

Links
The control options for the node: "printer-friendly version", "add new comment",
and the visitor history of the node. Tags begin and end:

<!-- BEGIN: links -->

<!-- END: links -->

{links}
Outputs the following (depending on the viewer’s permisions):

<a href="book/print/8"
title="Show a printer-friendly version of this book page
and its sub-pages.">printer-friendly version |
<a href="comment/reply/8#comment"
title="Share your thoughts and opinions related to this posting."
>add new comment |
662 reads

Comment
The Comment Section
The comment section (xtemplate.xtmpl) contains all the comments associated with a node, and
begins and ends with these tags:

<!-- BEGIN: comment -->

<!-- END: comment -->

The content of this section creates the code for a single comment, and is automaticaly repeated
for as many times are there are comments.

Avatar
Avatar contains an image representing the user who posted the content of a node, the image is
linked to the poster’s profile. Avatar begins and ends with these tags:

<!-- BEGIN: avatar -->

<!-- END: avatar -->

144

15 Jan 2006Drupal Handbook

{avatar}
Outputs the following:

<div class="avatar">

</div>

Title
The title of a comment. Tags begin and end:

<!-- BEGIN: title -->

<!-- END: title -->

{link}
If required, changes the comment title into a link to the comment. Used when displaying
comments in certain views.

{title}
The text of the comment title.

Submitted

{submitted}
Displays the username of the comment poster, linked to their profile, and the date and time the
comment was posted. This is the output:

Submitted by username on Mon, 04/19/2008 -
11:56.

New
Indicates if a comment is new. Tags begin and end:

<!-- BEGIN: new -->

<!-- END: new -->

145

Drupal Handbook15 Jan 2006

{new}
Adds the word "new" to a comment.

Content
Displays the content of a comment.

{content}
The comment text.

Links
Displays control links for comment, such as "reply", "delete", and "edit". Tags begin and end:

<!-- BEGIN: links -->

<!-- END: links -->

{links}
Displays the control links.

Blocks
The Section
The blocks section contains the column of boxes which can be used to display various navigation
and feature options, such as Forum Topics, Blogs, Who’s Online, and Syndicate. Blocks
sections can be configured to appear on the left or right of a page, or on both sides. The section
begins and ends with this code:

<!-- BEGIN: blocks -->
<!-- END: blocks -->

{blocks}
This tag is replaced by whatever blocks have been switched on in the Administration page
(admin/system/block).

Block
The block section defines the structure of each block, note the ’s’ in block/blocks.

<!-- BEGIN: block -->

146

15 Jan 2006Drupal Handbook

<!-- END: block -->

{module}
The name of the module who’s block is being displayed, this is added to a CSS class and ID
which can be used customise the look of the block.

{delta}
Adds a number to the ID of a block, so that each block has a unique ID even if a module displays
more than one block.

{title}
The title of the block.

{content}
The content of a block.

Footer
The Footer Section
The footer section appears at the very bottom of each page, it’s content can be specified by the
Administrator (admin/settings). The section begins and ends with this code:

<!-- BEGIN: footer -->
<!-- END: footer -->

Message
This area holds the mark-up around the message posted by the Administrator. The section
begins and ends with this code:

<!-- BEGIN: message -->
<!-- END: message -->

{footer_message}
Displays the actual content defined through the field "Footer message" in the "Settings"
Administration page (admin/settings).

147

Drupal Handbook15 Jan 2006

{footer}
Outputs footer messages generated by Drupal modules. (i.e. performance statistics from
devel.module)

Editing with Golive
Set Up
To edit xTemplate template files (xtemplate.xtmpl) in Adobe GoLive, follow these simple steps:

1. In the GoLive menu select "GoLive" then "Web Settings"
2. The Web Settings window will appear, click on the "File Mappings" tag.
3. In the File Mappings window open the "text/" directory
4. Scroll down until you see "html" in the Suffix column.
5. Click on "html" to select it, then click on the "+" button to create a duplicate.
6. Change the suffix of the duplicate html to "xtmpl"
7. That’s it you’re done!

Editing
If when opening a template file GoLive asks you which encoding to use, select "UTF-8".

If all you see after opening a template is "body onload-attributes", go into source mode and
delete "{onload_attributes}" from:

<body{onload_attributes}>

Remember to add "{onload-attributes}" back once you are finished editing.

In xtemplate.xtmpl, you may wish to add the following line temporarily:

<link type="text/css" rel="stylesheet" href="style.css" />

Remember to remove this line when completing work on the template, however. If you do not,
Drupal will not be able to switch between various styles for your theme. Drupal will
automatically load your style.css, if one exists, in the {styles} tag.

Plain PHP themes
PHP themes are the most direct way of themeing Drupal. A PHP theme consists of overrides for
Drupal’s built-in theme functions. You will most likely only override the basic theme hooks
(pages, nodes, blocks, ...), but you can theme anything from lists to links if you desire.

To create a PHP theme, create a directory in your themes directory (we will assume
themes/mytheme in this document), and inside that directory create a mytheme.theme file.
This file is a regular PHP file, so make sure it contains <?php ?> tags.

148

15 Jan 2006Drupal Handbook

The default theme functions in Drupal are all named theme_something() or
theme_module_something(), thus allowing any module to add themeable parts to the
default set provided by Drupal. Some of the basic theme functions include: theme_error()
and theme_table() which as their name suggests, return HTML code for an error message
and a table respectively. Theme functions defined by modules include
theme_forum_display() and theme_node_list().

In your .theme file, you can override any of these functions. To override the function
theme_something(), define the function mytheme_something() in your .theme file. This
function should have the same definition as the original. It is easiest to start with Drupal’s
function, and apply your changes there: many theme functions contain code logic within them.
To avoid problems when upgrading Drupal in the future, it is best to mark the changes between
the original Drupal function and your customized version. That way, you can reapply to your
customizations if the original was changed.

Aside from theme functions, there is one function that you need to include, called
mytheme_features(). This function should return an array of strings, marking the features
your theme supports (e.g. search box, logo, mission statement, ...). The theme system will
provide toggles and settings for these features in the administration section. In your code, you
can retrieve the value of these settings though theme_get_setting(). If you are planning on
releasing your theme to the public, it is advised to implement all Drupal features, so others can
customize your theme.

Available features are:

logo A logo can be used. The theme should check the settings
default_logo (boolean) and logo_path (string).

toggle_logo The logo can be turned on/off

toggle_name The site name can be turned on/off

toggle_search The search box can be turned on/off

toggle_slogan The site slogan can be turned on/off

toggle_mission The mission statement can be turned on/off

toggle_primary_links The primary navigation bar can be turned on/off/

toggle_secondary_links The secondary navigation bar can be turned on/off

toggle_node_user_picture The theme can optionally display user pictures next to nodes

toggle_comment_user_picture The theme can optionally display user pictures next to
comments

149

Drupal Handbook15 Jan 2006

Here’s the _features() function from the standard chameleon.theme:

<?php
function chameleon_features() {
 return array(
 ’logo’,
 ’toggle_name’,
 ’toggle_slogan’,
 ’toggle_primary_links’,
 ’toggle_secondary_links’);
}
?>

Note that unlike templates and styles, themes are tied to their directory name. If you want to
clone a PHP theme, you need to rename its directory, its .theme file and its functions inside the
.theme file.

Theme coding conventions
This theme coding style guide is based on the cvs log message of a developer sick of fixing
strange spacing and indentation.

Theme authors should take care to consistently treat spacing and indentation in their code. Just
as we have rules for indenting code - because this makes it easier to understand and maintain -
there are basic rules for themes and included HTML files:

Each level of indentation adds 2 spaces
Match the indentation of (long) opening and closing block html tags
Distinguish between PHP and HTML indentation. Not
 function header($title = "") {
 <?PHP
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
 <htm1>
 ...

but

 function header($title = "") {
<?PHP
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<htm1>
...

150

15 Jan 2006Drupal Handbook

http://cvs.drupal.org/viewcvs/contributions/themes/interlaced/interlaced.theme?cvsroot=contrib#rev1.9

This not only saves the superfluous leading spaces, but also makes it much easier to find
matching opening and closing tags defined in functions with different indentation.

Prefer PHP in HTML to HTML in PHP.

Example: not

<?php
 function node($node, $main = 0) {
 print "\n<!-- node: \$node->title\ -->\n";
 print "<div class=\"nodetitle\">$node->title</div>";
 print "<div class=\"nodebody\">" .
$this->links(
 array(format_name($node), format_date($node->created,
"small"), "&nbsp;")
) . "";
?>

but

 function node($node, $main = 0) {
<?PHP
 <!-- node: "<?php print $node->title; ?>" -->;
 <div class="nodetitle"><?php print $node->title; ?></div>
 <div class="nodebody">
 <?php print $this->links(
array(format_name($node), format_date($node->created, "small"),
"&nbsp;")); ?>

After all, PHP is a HTML embedded scripting language - and not the other way around.

Updating your themes
As Drupal develops with each release it becomes necessary to update themes to take advantage
of new features and stay functional with Drupal’s theme system.

Converting 3.0 themes to 4.0
Required changes

Changes in class definition
Theme class definition uses now a different syntax:
Instead

151

Drupal Handbook15 Jan 2006

 class Theme extends BaseTheme {

you should use

 class Theme_themename extends BaseTheme {

where themename is name of your theme in lowercase.

Changes in function header()
Function header() takes now an optional parameter $title.
Instead

 function header() {

you should use

 function header($title = "") {

Previously all pages in Drupal site had the fixed page title: sitename - site slogan. Now the
page title can be dynamic - for example when displaying single node, the page title can be
note title - sitename. So, instead

 print variable_get("site_name", "drupal") ." - ". variable_get("site_slogan", "");

you should use a more complex syntax:

 if ($title) {
 print $title ." - ". variable_get("site_name", "drupal");
 }
 else {
 print variable_get("site_name", "drupal") ." - ". variable_get("site_slogan", "");
 }

of if you want to use compact version of the same construction:

 print $title ? $title." - ". variable_get("site_name", "drupal") :
variable_get("site_name", "drupal") ." ". variable_get("site_slogan", "");

This piece of code checks if $title is present. If yes, it outputs $title and site name, if not, it
outputs site name and slogan.

If you used theme_account() function (what outputs login/membership box) in header(),
please remove it. Login box placement is controlled in Administration > blocks page from
now on and theme_account() is no longer used.

Changes in function node()
format_name() accepts now parameter $node, not $node->name. Also $node->timestamp is
replaced with $node->created. So, instead

152

15 Jan 2006Drupal Handbook

 print strtr(t("Submitted by %a on %b"), array("%a" => format_name($node->name), "%b" => format_date($node->timestamp)));

you should use
 print strtr(t("Submitted by %a on %b"), array("%a" => format_name($node), "%b" => format_date($node->created)));

node_index() is no longer used because Drupal 4.0 has more sophisticated classification
system than Drupal 3.0 meta tags. So instead plain simple

 print node_index($node);

you have to use

 $terms = array();

 if (function_exists("taxonomy_node_get_terms")) {
 foreach (taxonomy_node_get_terms($node->nid) as $term) {
 $terms[] = l($term->name, array("or" => $term->tid), "index");
 }
 }

 print $this->links($terms);

Function link_node() accepts an optional parameter $main. Instead

 if ($main) {
 print $this->links(link_node($node));
 }

you should use

 if ($links = link_node($node, $main)) {
 print $this->links($links);
 }

Changes in function comment()
format_name() accepts now parameter $comment, not $comment->name. Instead
 print strtr(t("Submitted by %a on %b"), array("%a" => format_name($comment->name), "%b" => format_date($comment->timestamp)));

you should use
 print strtr(t("Submitted by %a on %b"), array("%a" => format_name($comment), "%b" => format_date($comment->timestamp)));

Changes in function footer()
If you used theme_account() function (what outputs login/membership box) in footer()
function, please remove it. Login box placement is controlled in Administration > blocks page
from now on and theme_account() is no longer used.

153

Drupal Handbook15 Jan 2006

Optional changes

New function: system()
Optionally theme can have a system() function what provides info about theme and its
author:
function system($field) {
 $system["name"] = "theme name";
 $system["author"] = "author name";
 $system["description"] = "description of the theme";
 return $system[$field];
 }

Converting 4.0 themes to 4.1
Required changes
There is no required changes, all Drupal 4.0 themes should also work in Drupal 4.1

Optional changes

theme_head
Insert a function theme_head() inside your theme, right after the HTML’s <head>
tag:

<html>
 <head>
 <?php print theme_head(); ?>
 ...

This change allows modules to incorporate custom markup inside <head>
</head> tags such as Javascript, <meta> tags, CSS and more.

Converting 4.1 themes to 4.2
Required changes

Add a theme_onload_attribute() to a <body> tag:
<body <?php print theme_onload_attribute(); ?> >

Optional changes

154

15 Jan 2006Drupal Handbook

Take advantage of settings() hook
Themes can now populate settings to adminstration pages using the function
themename_settings(). Example:

function mytheme_settings() {
 $output = form_select("Sidebar placement", "mytheme_sidebar",
 variable_get("mytheme_sidebar", "right"),
 array(
 "none" => t("No sidebars"),
 "left" => t("Sidebar on the left"),
 "right" => t("Sidebar on the right"));
}

Direct you site logo to index.php
If you theme has the logo and you have made it to link or even <a
href="<?php print path_uri();>"> then please replace these instances with
a simple

One additional change may be needed. Using a custom theme adapted from a generic one, the
original node function has the following code:

<?php
$terms = array();
if (function_exists("taxonomy_node_get_terms")) {
if ($terms = taxonomy_node_get_terms($node->nid)) {
$taxlinks = array();
foreach ($terms as $term) {
$taxlinks[] = l($term->name, array("or" => $term->tid), "index");
}
$taxo = $this->links($taxlinks);
}
}
?>
Which gaves an error on the index page after upgrading from 4.1 to 4.2 and contains invalid
URLs. Replacing the above code with this fixes the error.
<?php
$terms = array();
if (module_exist("taxonomy")) {
$terms = taxonomy_link("taxonomy terms", $node);
}
$taxo = $this->links($terms);
?>

155

Drupal Handbook15 Jan 2006

Converting 4.2 themes to 4.3
No changes are required :)

A few more CSS classes are available to you if you wish to use them. A non-exhaustive list is

read-more: affects the formatting of the ’read more’ link
cell-highlight: affects the cell in the table header which is currently the sort key. this cell
also has an image which you can override in your theme->image directory (most images are
overridable in this way).

Converting 4.3 themes to 4.4
For more information on how the interaction between themes and modules has changed, see
converting 4.3 modules to 4.4.

The theme system is no longer built on PHP’s object model. The BaseTheme class is no more
and, as such, you no longer have to use a class for your theme. Instead, a theme is a
collection of functions. This will make Drupal theme development feel much the same as
Drupal module development. Prefix your theme function with your theme’s name.
Examples:
mytheme_page(), mytheme_comment(), mytheme_node().
mytheme::system() (or in the new parlance, mytheme_system()) is no longer used.
The theme description used on the theme administration page should instead be returned
by a new function called
mytheme_help(). This function follows the same semantics as the regular module _help
hook:
<?php
function mytheme_help($section) {
 switch ($section) {
 case ’admin/system/themes#description’:
 return t("A description of mytheme");
 }
}
?>
All theme functions now return their output instead of printing them to the user. There
should be no print or echo statements in your theme.
The mytheme_header() and mytheme_footer() functions and no longer used, a
mytheme_page() function is introduced instead.
<?php
function mytheme_page($content, $title = NULL, $breadcrumb = NULL) {
 if (isset($title)) {
 drupal_set_title($title);
 }
 if (isset($breadcrumb)) {
 drupal_set_breadcrumb($breadcrumb);

156

15 Jan 2006Drupal Handbook

http://drupal.org/node/view/4128

 }
 ...
}
?>
This function should return the HTML code for the full page, including the header, footer
and sidebars (if any). Note that it is important to set the title and the breadcrumbs for Drupal
with the setter functions as suggested above, instead of just using the values provided as
parameters. This way modules acting on the title or breadcrumb values can use the real value
when generating blocks for example.
Themes now have the responsibility of placing the title, breadcrumb trail, status messages,
and help text for each page. This gives them the flexibility to, for example, place the breadcrumb
trail above the title or in the footer. It is now expected that mytheme_page() will return
these elements. The page theme function should override the title and breadcrumb trail
retrieved from Drupal, in case some explicit value is provided in the function parameters (see
above). A theme can obtain the values set before by calling the functions
drupal_get_title(), drupal_get_messages(), menu_get_active_help(), and
drupal_get_breadcrumb(). The breadcrumb trail is returned from the latter function as
an array of links; it can be formatted into a string by using theme("breadcrumb",
drupal_get_breadcrumb()). Most themes use the following new code-snippet in their
page function:
<?php
if ($title = drupal_get_title()) {
 $output .= theme("breadcrumb", drupal_get_breadcrumb());
 $output .= "<h2>$title</h2>";
}
if ($help = menu_get_active_help()) {
 $output .= "<div class=\"help\">$help</div><hr />";
}
foreach (drupal_get_messages() as $message) {
 list($message, $type) = $message;
 $output .= "". t("Status") .": $message<hr />";
}
?>
The _head() hook is eliminated and replaced with the drupal_set_html_head() and
drupal_get_html_head() functions, therefore the HTML head part should include the
return value of drupal_get_html_head() instead of the return value of
theme("head").
The theme_node() function takes an extra parameter now, $page, that indicates to the
theme whether to display the node as a standalone page or not. If $page is true, then the
title of the node should not be printed, as it will already have been printed by theme_page.
Also note that the node body will only be filtered with the configured filters if the node page is
displayed. Otherwise only the teaser will be filtered for performance reasons. Example:
<?php
function mytheme_node($node, $main = 0, $page = 0) {
 if (!$page) {
 $output = "<h2>" . $node->title . "</h2>";

157

Drupal Handbook15 Jan 2006

 }
 if ($main && $node->teaser) {
 $output .= "<div>". $node->teaser . "</div>";
 }
 else {
 $output .= "<div>". $node->body . "</div>";
 }
 return $output;
}
?>
To improve block themeability, theme_block() has been changed. The old

function theme_block($subject, $content, $region = "main")

has become

function theme_block($block)

with $block being an object containing $block->subject, $block->content, etc. See
the doxygen doc for details and for how you can style blocks with CSS.

Also, theme_blocks() has been improved to allow themes to hook into (change) the
blocks before outputting them. See this cvs log message for details.

fooo bar

Converting 4.4 themes to 4.5
Note: the theme system changed significantly in 4.5. Make sure you read through this entire
guide, as an outdated theme will prevent you from accessing vital parts of your site.

Directory structure
Templates are now seen as themes unto themselves, rather than hiding behind their template
engine. Template engines now reside in subdirectories of themes/engines, while templates
simply are placed in subdirectories of themes. Template engines compatible with Drupal 4.5
will identify templates based on their filename and send the appropriate listings to the theme
system.

For xtemplate templates, your template must be named xtemplate.xtmpl, and your default
stylesheet must be named style.css (as mentioned below in the "Styles" section).

For example, the old Xtemplate pushbutton template has moved from
themes/xtemplate/pushbutton to themes/pushbutton.

158

15 Jan 2006Drupal Handbook

http://drupal.kollm.org/tmp/drupal-phpdoc/group__themeable.html#ga10
http://lists.drupal.org/archives/drupal-cvs/2003-11/msg00414.html

Tabs (a.k.a. Local Tasks)
Drupal now separates out menu items that are "local tasks"; functions to be performed on the
current location. By default, these are rendered as a set of tabs. Themes are responsible for
printing these. A typical location is below the page title, so that

<?php
if ($title = drupal_get_title()) {
 $output .= theme("breadcrumb", drupal_get_breadcrumb());
 $output .= "<h2>$title</h2>";
}
if ($help = menu_get_active_help()) {
 $output .= "<small>$help</small><hr />";
}
?>
becomes
<?php
if ($title = drupal_get_title()) {
 $output .= theme("breadcrumb", drupal_get_breadcrumb());
 $output .= "<h2>$title</h2>";
}
if ($tabs = theme(’menu_local_tasks’)) {
 $output .= $tabs;
}
if ($help = menu_get_active_help()) {
 $output .= "<small>$help</small><hr />";
}
?>
For xtemplate templates, Before:

<!-- BEGIN: title -->
{breadcrumb}
<h1 class="title">{title}</h1>
<!-- END: title -->

After:

<!-- BEGIN: title -->
{breadcrumb}
<h1 class="title">{title}</h1>
<!-- BEGIN: tabs -->
<div class="tabs">{tabs}</div>
<!-- END: tabs -->
<!-- END: title -->

159

Drupal Handbook15 Jan 2006

Status Messages
The theme_page function is no longer responsible for rendering each status message. Instead,
we now use the theme_status_messages() function. Before:

<?php
foreach (drupal_get_messages() as $message) {
list($message, $type) = $message;
$output .= "". t("Status") .": $message<hr />";
}
?>
After:
<?php
$output .= theme_status_messages();
?>

Static vs. Sticky
In Drupal 4.5, "static" posts have been renamed as "sticky" posts. If your theme uses special
styling for this type of post, you’ll want to change any references from "static" to "sticky".

Avatar vs. User Picture
In Drupal 4.5, "avatars" have been renamed to "user pictures". Additionally, the method by
which themes display avatars has changed. Themes now call theme_user_picture, which
returns the appropriate image and link HTML. Before:

<?php
if (module_exist("profile") && variable_get("theme_avatar_node", 0)) {
$avatar = $node->profile_avatar;
if (empty($avatar) || !file_exists($avatar)) {
$avatar = variable_get("theme_avatar_default", "");
}
else {
$avatar = file_create_url($avatar);
}
if ($avatar) {
$avatar = "<img src=\"$avatar\" alt=\"" . t("%user’s avatar",
array("%user" => $node->name ? $node->name :
t(variable_get("anonymous", "Anonymous")))) . "\" />";
if ($node->uid) {
$avatar = l($avatar, "user/view/$node->uid", array("title" => t("View
user profile.")));
}
$output .= $avatar;
}
}

160

15 Jan 2006Drupal Handbook

?>
After:
<?php
$output .= theme(’user_picture’, $node);
?>
For xtemplate templates, simply replace:

<!-- BEGIN: avatar -->
<div class="avatar">{avatar}</div>
<!-- END: avatar -->

with:

<!-- BEGIN: picture -->
{picture}
<!-- END: picture -->

Theme Screenshots
The new theme selector looks for a screenshot of each theme with the filename
screenshot.png in each directory. Screenshots are optional and themes without screenshots
will simply display "no screenshot" on theme selection pages. To create a screenshot which
matches those in core, follow these instructions:

1. Log in as administrator user.
2. Enable the following modules, for some extra menu items:

aggregator, blog, node, page, story, tracker
3. Create the following story node:

title: Donec felis eros, blandit non.
body: Morbi id lacus. Etiam malesuada diam ut libero. Sed blandit, justo nec euismod
laoreet, nunc nulla iaculis elit, vitae. Donec dolor. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos hymenaeos. Vivamus vestibulum felis nec libero. Duis lobortis. Cum sociis natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus. Nunc venenatis pretium magna. Donec
dictum ultrices massa. Donec vestibulum porttitor purus. Mauris nibh ligula, porta
non, porttitor sed, fermentum id, dolor. Donec eu lectus et elit porttitor rutrum. Aenean
justo. Phasellus augue tortor, mattis nonummy, aliquam euismod, cursus eget, ipsum.
Sed ultricies bibendum ante. Maecenas rhoncus tincidunt eros.

4. Look at the node, and make sure the tabs are visible. Take a screenshot.
5. Cut out a piece about 420x254 resized to 150x90 (35% zoom). Try to show useful page

elements (menu, tabs, title, links).
6. Applied a plain ’sharpen’ filter to the thumbnail.
7. Save as "screenshot.png" in theme (or style) directory.

161

Drupal Handbook15 Jan 2006

Centralized Theme Configuration
The theme system now has the ability to store certain common configuration items for each
theme. However, some themes may not wish to utilize all of these settings, so a
theme_features hook has been introduced. In each theme / theme engine, this function
should return an array of settings which the theme supports. To implement each of these
functions, themes / theme engines should call the theme_get_setting function, which will
return data regarding the administrator’s setting for this particluar theme. If there are no settings
for the current theme, global values will be returned. Below is a table of values for the
_features hook, a description of their function, and a code snippet of the appropriate
theme_get_settings call.

_features hook value Description theme_get_settings call

’logo’
theme allows
customization
of site logo

<?php
if ($logo = theme_get_setting(’logo’)) {
$output .= " ";
}
?>

’toggle_name’

theme allows
site name to
be switched
on/off

<?php
if (theme_get_setting(’toggle_name’)) {
$output .= " <h1 class=\"site-name title\">".
l(variable_get(’site_name’, ’drupal’), "").
"</h1>";
}
?>

’toggle_search’

theme allows
search box to
be switched
on/off

<?php
if (theme_get_setting(’toggle_search’)) {
$output .= search_form();
}
?>

’toggle_slogan’

theme allows
site slogan to
be switched
on/off

<?php
if (theme_get_setting(’toggle_slogan’)) {
$output .= " <div class=\"site-slogan\">".
variable_get(’site_slogan’, ’’) ."</div>";
}
?>

’toggle_mission’

theme allows
site mission
to be
switched
on/off

<?php
if ($mission = theme_get_setting(’mission’)) {
$output .= $mission;
}
?>

’toggle_primary_links’

theme allows
primary links
to be
customized

<?php
$output .= theme_get_setting(’primary_links’);
?>

162

15 Jan 2006Drupal Handbook

’toggle_secondary_links’

theme allows
secondary
links to be
customized

<?php
$output .= theme_get_setting(’secondary_links’);
?>

’toggle_node_user_picture’

theme allows
node user
pictures to be
switched
on/off

<?php
if (theme_get_setting(’toggle_node_user_picture’)
&& $picture = theme(’user_picture’, $node)) {
$output .= $picture;
}
?>

’toggle_comment_user_picture’

theme allows
comment
user pictures
to be
switched
on/off

<?php
if
(theme_get_setting(’toggle_comment_user_picture’)
&& $picture = theme(’user_picture’, $comment)) {
$output .= $picture;
}
?>

N/A (Global Setting)

Allow admin
to specify
which node
types should
display
"Submitted
by..." message

<?php
$output .=
theme_get_setting("toggle_node_info_$node->type")
? t("Submitted by %a on %b.", array("%a" =>
format_name($node), "%b" =>
format_date($node->created))) : ’’;
?>

Note that all of these settings are optional, but recommended.

Theme-specific settings are still possible as well. They are still read from the theme_settings,
but are now placed in a group on the appropriate theme’s tab, rather than on a separate page.

Styles
The theme system now allows for switching between different "styles" for each theme. Each
"style" is defined by a style.css file in a subdirectory of the theme. In order to accomplish this
style switching, themes should add a call to theme_get_styles() within their <head> block.
For example:

<?php
$output .= drupal_get_html_head();
$output .= " <link rel=\"stylesheet\" type=\"text/css\"
href=\"themes/chameleon/common.css\" />\n";
$output .= theme_get_styles();
$output .= "</head>";
?>
Notice how the reference to common.css is listed before theme_get_styles(). This allows
individual styles to override your common CSS rules (if you use any).

163

Drupal Handbook15 Jan 2006

The "default" style for each theme (the stylesheet in which you define color scheme and other
general presentation items) should be renamed to style.css and placed in your theme
directory. You should also remove any references to it from your theme or template. Drupal will
reference it in theme_get_styles(). (If the default style is selected)

For xtemplate themes, you need to add the {styles} tag add the end of your <head> section.

_help hook
The theme_help hook is no longer used. It can be removed if desired.

References to comment_referer_load() should be switched to comment_node_url()

Converting 4.5 themes to 4.6
Search form
If your theme implements a search form, it needs to be altered. The search box <input> tag
should have the name attribute set to edit[keys] rather than keys.

Node links
Node links no longer use the link_node() function, but instead are passed as an array in
$node->links. PHP-based themes will need to be updated to pass this array through
theme(’links’). Template-based themes shouldn’t need any changes.

Pages
The function theme_page() no longer takes $title or $breadcrumb arguments. Remove the
two arguments and any special handling of them. All page titles and breadcrumbs are now
retieved using drupal_get_title() and drupal_get_breadcrumb().

Node and comment markers
Node and comment markers are not restricted anymore to signal that something is new or that a
form element is required. The required form element marker was moved to
theme_form_element(), while theme_mark() was kept to generate content markers. New
constants help in deciding on the marker to display: MARK_NEW signals new content,
MARK_UPDATED is for changed or extended content and MARK_READ is for read or too old
content. Now it is possible to output markers for read content too, and distinguish between new
and updated content.

164

15 Jan 2006Drupal Handbook

http://drupaldocs.org/theme_page
http://drupaldocs.org/drupal_get_title
http://drupaldocs.org/drupal_get_breadcrumb

Pager and menu item themeing
Parts of the pager are now themeable themselfs. The menu theming was also reorganized, to be
easier to add wrappers and theme menu links. If you override any of the theme_menu...()
functions in your theme or template, compare them to the current versions in theme.inc and
menu.inc to update them.

Text validation changes
Due to some changes in plain-text processing, some parameters which were HTML are now
plain-text and vice-versa. If you use a theme engine, you shouldn’t need any changes, except if
you override extra theme_ functions yourself.

If you are seeing problems, the best approach is to compare every theme_ functions that you
override with the one from Drupal core. In particular, the menu theme functions
(theme_menu_*) require changes in the way l() is used.

You should also try submitting a node and a comment with HTML tags in the subject. The tags
should come out escaped, and should be shown on screen rather than interpreted. If this is not
the case, you need to check your theme_node() and theme_comment() functions.

Finally, page titles should be run through strip_tags() when put into the html <title> tag in
<head>. This should only be a problem if you have a .theme theme, as the theme engines have
all be updated to accomodate this change.

Converting 4.6 themes to HEAD
Table row coloring
The class names for alternating table rows have been changed from light and dark to odd and
even.

Theme screenshot guidelines
Every theme for 4.5+ needs a screenshot in the form of a screenshot.png placed in the
theme/template/style directory. It is best that screenshots are consistent. The guidelines for core
theme screenshots are (starting from a blank Drupal site):

1. Log in as the first user.
2. Enable the following modules, for some extra menu items: aggregator, blog, node, page, search,

story and tracker.
3. Turn on the features that the theme supports (logo, site name, slogan, search box). Add

some primary and secondary links if needed. We suggest "Link 1" "Link 2" "Link 3", you can
link them to e.g. "user/1".

4. Set the site name to Drupal and slogan to Community Plumbing.
5. Create the following story node:

165

Drupal Handbook15 Jan 2006

Donec felis eros, blandit non

Morbi id lacus. Etiam malesuada diam ut libero. Sed blandit, justo nec euismod laoreet,
nunc nulla iaculis elit, vitae. Donec dolor. Class aptent taciti sociosqu ad litora torquent
per conubia nostra, per inceptos hymenaeos. Vivamus vestibulum felis nec
libero. Duis lobortis. Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Nunc venenatis pretium magna. Donec dictum ultrices
massa. Donec vestibulum porttitor purus. Mauris nibh ligula, porta non, porttitor sed,
fermentum id, dolor. Donec eu lectus et elit porttitor rutrum. Aenean justo. Phasellus
augue tortor, mattis nonummy, aliquam euismod, cursus eget, ipsum. Sed ultricies
bibendum ante. Maecenas rhoncus tincidunt eros.

6. Look at the node, and make sure the tabs are visible. Take a screenshot.
7. Cut out a piece about ~420x254 resized to exactly 150x90 (~35% of the original size). Try to

show only useful page elements (menu, tabs, title, links). Don’t include browser chrome
(toolbar, status bar, scrollbar, etc).

8. Apply a standard ’sharpen’ filter to the thumbnail for clarity.
9. Save as a PNG, in paletted colorspace to cut down on size.

Example:

For Drupal.org project thumbnails, use the guidelines above except that:

You should fill up the site more. For example, add a comment to the story node or add
some blocks.
The screenshot should show the entire page, though still without browser chrome (toolbar,
status bar, scrollbar, etc).
The thumbnail should be 320x200 pixels large. It is best to resize to a width of 320 pixels
first, then to crop off the bottom to a height of 200 pixels.
Try to make your original screenshot have a width of about 1000 pixels, so that the
thumbnail is about 30% of the original size.
Name the screenshot screenshot-drupal.org.png or
screenshot-drupal.org.jpg.
Try to keep the image small: save as paletted PNG or as a JPEG with 10-20% compression.
This reduces the load time of the theme list on Drupal.org. Aim for 15-20KB.
Include the image in your project’s description with class picture:
<img src="http://cvs.drupal.org/......./screenshot-drupal.org.png"
class="picture" />
If you don’t have permission to use the tag, ask a site maintainer to add your
screenshot.
If your theme is available on the Drupal Theme Garden, turn the thumbnail into link to it:

166

15 Jan 2006Drupal Handbook

Example:

Theme how-to’s
This section collects ’How-to’ articles on subjects relevant to theme developers.

Tips for designing themes in Dreamweaver, GoLive etc.
An Xtemplate-in-GoLive how-to is available at http://drupal.org/node/6634

Dreamweaver
Dreamweaver can edit your PHP, template and CSS files just fine, and in some cases
(XTemplate, PHPTAL) with a graphical preview.

Find the Dreamweaver configuration files, MMDocumentTypes.xml and Extensions.txt.
where they are depends on what platform is being used - the Find file function is your friend
here.

In Extensions.txt

Change the line ending in

: All Documents
to include
TAL,XTMPL,MODULE,THEME,ENGINE
Likewise, add TAL,XTMPL to the line ending in : HTML files
and
MODULE,THEME,ENGINE to the : PHP files line.

167

Drupal Handbook15 Jan 2006

http://drupal.org/node/6634

In MMDocumentTypes.xml
you likewise want to add tal and xtmpl file types to the file type descriptions, e.g. change the
line beginging documenttype id="HTML" to be
<documenttype id="HTML" internaltype="HTML"
winfileextension="htm,html,shtml,shtm,stm,tpl,lasso,xhtml,tal,xtmpl"
macfileextension="htm,html,shtml,shtm,tpl,lasso,xhtml,tal,xtmpl"
file="Default.html" writebyteordermark="false">

and likewise add .theme, .module and .engine to the appropriate section

<documenttype id="PHP_MySQL" servermodel="PHP MySQL"
internaltype="Dynamic"
winfileextension="php,php3,php4,theme,module,engine"
macfileextension="php,php3,php4,theme,module,engine" file="Default.php"
writebyteordermark="false">

The local copy of your site can now be edited in Dreamweaver.

Adding your theme to Drupal.org
To add your theme to Drupal.org, it must be GPL. Do not include images or other copyrighted
works that you do not want to see re-used or otherwise altered.

Themes are tracked the same way that code is, in the CVS repository. You will need to apply for
a CVS account. Once you are approved, you will be able to check your theme into the Drupal
CVS repository. Create a project and the download will be created for it automatically.

If you do add your theme, users will likely post suggestions, file bugs, and generally desire that
you keep the theme up to date with current versions of Drupal.

Theme snippets repository
Did you write a nice custom template function? Please add a book page below this one. Please
remember to document your code well.

Custom login
This creates a little custom login area. If you are logged in, it displays your username and a link
to your profile, otherwise it includes a Register and minimal Login area. It was developed for
OurMedia.

<?php if ($user->uid) : ?>
 Logged in as: <?php print l($user->name,’user/’.$user->uid); ?> |
<?php print l("logout","logout"); ?>
 <?php else : ?>
 <?php print l("Register","user/register"); ?> | Login: <form

168

15 Jan 2006Drupal Handbook

http://drupal.org/cvs-account
http://drupal.org/cvs-account
http://www.ourmedia.org/

action="user/login" method="post"><input type="hidden"
name="edit[destination]" value="user" /><input type="text"
maxlength="64" class="form-text" name="edit[name]" id="edit-name"
size="15" value="" /><input type="password" class="form-password"
maxlength="64" name="edit[pass]" id="edit-pass" size="15" value=""
/><input type="submit" name="op" value="Log in" /></form>
 <?php endif; ?>

Temporarily on the dev wiki until someone can get it posted here.

Customize display of submission information based on node
type
You can display different author information and still respect the global "display post
information" settings. In this example I wanted flexinode-2 items to be displayed with the usual
submission info, but have every other type respect the "display post information" setting. Note
that the content type I created, "news", goes by its flexinode name, and not by what I named it.
Here is an example snippet for a node.tpl.php:

<?php if (theme_get_setting(’toggle_node_info_’ . $node->type)) : ?>
<?php if ($node->type == ’flexinode-2’):?>
<div class="info"><?php print $submitted; ?></div>
<?php elseif($node->type): ?>
<div class="info"> by <?php print $name; ?></div>
<?php endif; ?>
<?php endif; ?>

For my settings this displays:

NEWS NODE TITLE HERE
submitted by me on Tue, 04/26/2005 - 10:55am.

STORY NODE TITLE HERE
by me

PAGE NODE TITLE HERE

because I have set news and story nodes to display the submitted info while page is set to
display no submission info at all.

get an contextual array for your node-links
Often I am very annoyed by the fact the links under the nodes are only availble as plain text
strings. For example when I only wnat the read more link, or only the "comments" links.
(example of usage)

169

Drupal Handbook15 Jan 2006

http://dev.bryght.com/t/wiki/OurMediaCustomLogin
http://bler.webschuur.com/

This PHPtemplate-specific snipped creates an additional variable: an array with much nicer link
data.

function _phptemplate_variables($hook, $vars) {
 switch ($hook) {
 case ’node’:
 foreach ($vars[node]->links as $link) {
 preg_match("/<a\s*.*?href\s*=\s*[’\"]([^\"’>]*).*?>(.*?)<\/a>/i",$link,
$matches);
 $vars[nodelinks][][’url’] = $matches[1];
 $vars[nodelinks][][’text’] = $matches[2];
 }
 break;
 }
 return $vars;
}

Please add improved regular expressions for the decomposition of anchors in this post directly,
or in a comment.

How to display mission on every page?
This seems an easy one, but I can’t figure out how to display the site mission on every page, it
only shows in the home page... I am using a self-made php template, and I have the following
line in page.tpl.php:
Hope you can help me, TIA!

Make images square
Often images are not square -landscape or portrait- which causes rendering problems or just
ugly pages. Tables might have different sized rows or columns, inline images look differnt in
each post, or rows of images appear horribly cluttered and inconsistent.
This function will add padding to your images, to make them appear in a square. But remember
that this will override any padding applied to img in your stylesheets.

<?php
function themename_image($path, $alt = ’’, $title = ’’, $attr = ’’,
$getsize = true) {
 //always do getimagesize
 list($width, $height, $type, $attr) = @getimagesize($path);
 //get the biggest value.
 if ($width > $height) {
 $padding = round(($width - $height)/2);
 $style_str = ’ style="padding:’.$padding.’px 0;"’;
 }
 elseif ($width < $height) {
 $padding = round(($height - $width)/2);

170

15 Jan 2006Drupal Handbook

http://drupal.org/node/16383

 $style_str = ’ style="padding:0 ’.$padding.’px;"’;
 }
 return "<img src=\"$path\" $attr alt=\"$alt\" title=\"$title\"
$style_str />";
}
?>

Overriding drupal.css; two approaches
There are two methods to removing drupal.css from your theme in phptemplate.

The first cuts out the link from the $head variable. In page.tpl.php, replace your

<?php
print $head
?>

with (remove the space in ’style’):

<?php
print str_replace(’<st yle type="text/css" media="all">@import
"misc/drupal.css";</style>’, ’’, $head);
?>

The other method requires overriding the stylesheet import themable function. Simply add this
to your theme’s template.php file:

<?php
function phptemplate_stylesheet_import($stylesheet, $media = ’all’) {
 if ($stylesheet != ’drupal/misc.css’) return
theme_stylesheet_import($stylesheet, $media);
}
?>

171

Drupal Handbook15 Jan 2006

Drupal.org site maintainers
Below is an alphabetical list of users who have additional permissions to help maintain the
drupal.org website:

1. adrian
2. ahoppin
3. aldon@deanspace.org
4. Amazon
5. andremolnar
6. ax
7. BÃ¨r Kessels
8. bertboerland@ww...
9. blogdiva@www.cu...

10. Boris Mann
11. bryan kennedy
12. cel4145
13. chx
14. Development Seed
15. dggreenberg
16. Dries
17. DriesK
18. drumm
19. Dublin Drupaller
20. ericgundersen
21. FactoryJoe@civi...
22. Gerhard Killesreiter
23. Goba
24. JonBob
25. Junyor
26. jvandyk
27. kbahey
28. Kieran Huggins
29. kika
30. killes@www.drop.org
31. Kjartan
32. Kobus
33. mathias
34. Morbus Iff
35. moshe weitzman
36. nysus
37. puregin
38. Richard Eriksson

172

15 Jan 2006Drupal Handbook

http://drupal.org/user/1517
http://drupal.org/user/17849
http://drupal.org/user/3385
http://drupal.org/user/18703
http://drupal.org/user/11015
http://drupal.org/user/8
http://drupal.org/user/2663
http://drupal.org/user/188
http://drupal.org/user/14705
http://drupal.org/user/4426
http://drupal.org/user/9777
http://drupal.org/user/2119
http://drupal.org/user/9446
http://drupal.org/user/4736
http://drupal.org/user/17922
http://drupal.org/user/1
http://drupal.org/user/17892
http://drupal.org/user/3064
http://drupal.org/user/8625
http://drupal.org/user/10223
http://drupal.org/user/11639
http://drupal.org/user/83
http://drupal.org/user/4166
http://drupal.org/user/831
http://drupal.org/user/7006
http://drupal.org/user/2375
http://drupal.org/user/4063
http://drupal.org/user/14904
http://drupal.org/user/11
http://drupal.org/user/227
http://drupal.org/user/2
http://drupal.org/user/74
http://drupal.org/user/2275
http://drupal.org/user/9034
http://drupal.org/user/23
http://drupal.org/user/4131
http://drupal.org/user/9170
http://drupal.org/user/8791

39. rivena
40. Robert Castelo
41. robertDouglass
42. Robin Monks
43. Roland Tanglao@...
44. sepeck
45. Steven
46. TDobes
47. Uwe Hermann
48. walkah
49. wnorrix

If you have been around for a while, and you want to help maintain Drupal.org, get in touch
with Dries.

173

Drupal Handbook15 Jan 2006

http://drupal.org/user/12450
http://drupal.org/user/3555
http://drupal.org/user/5449
http://drupal.org/user/12246
http://drupal.org/user/12748
http://drupal.org/user/5195
http://drupal.org/user/10
http://drupal.org/user/4179
http://drupal.org/user/12054
http://drupal.org/user/1531
http://drupal.org/user/7344
http://drupal.org/user/1

Site maintainer’s guide
This page lists some guidelines for Site Maintainers on Drupal.org.

Unpublishing vs deleting of content
You should only unpublish a post if you can conceivably imagine it being re-published in the
future. This should only be for very rare cases. A good example is an unmaintained project
(someone might take over development later): unpublish, don’t delete (*). On the other hand,
spam can be deleted immediately.

(*) Actually, old projects are automatically unpublished by the cvs scripts, so this is not
something you need to do.

Blocking vs deleting of users
Deleting users is a very destructive action, as it makes all their content inaccessible in most
places, even to administrators. It should not be done. If a user is a troublemaker, just block their
account (click username -> edit -> status: blocked). Of course, you should not block people just
because they say unfavorable things about Drupal. Here are good reasons to block someone:

Spamming (even once)
Repetitive flaming
Repetitive posting of trash content (test posts, inappropriate book pages, ...)

Suggested Workflow
When you spot something out of the ordinary, we suggest these steps:

1. Take a look at the user’s post history on the "user -> track -> track posts" page. This will
possibily show more bad posts by the same person.

2. Take a look at the user’s page visit history on the "user -> track -> track page visits" page.
That way, you can easily tell if a user just registered to spam or if they made only one bad
post in a series of good ones.

3. If the content is spam, you can delete it immediately and block the person’s account.
Otherwise, send them a note through their contact tab about it:

Your post Foobar on http://drupal.org/node/1234 was inappropriate because it
contained flaming. Please be nice to your fellow visitors on Drupal.org, or your account
may be blocked.

4. If you know someone to be a troublemaker who has been warned before, block their
account.

174

15 Jan 2006Drupal Handbook

http://drupal.org/node/1234

Badly formatted posts
If you see a post with bad formatting which messes up the page’s layout, please edit it. A
common mistake for newbies is to use two opening tags rather than an opening/closing pair.
Tags like bold and italic can ’bleed through’ beyond the post, while unclosed block-level tags
can mess up the positioning of the sidebar.

If someone made a serious mistake while posting a forum topic and posted a correction in a
comment below, try to update the original post and delete the correction.

175

Drupal Handbook15 Jan 2006

Translator’s guide
This is the Drupal translator’s guide. It will cover most aspects of translating Drupal’s user
interface. It will not cover the use of the various programs that can be used to do a translation.
These programs are usually quite well documented.

As of version 4.5.0, Drupal includes an extended locale.module that enables you to share
translations through the use of PO files. PO files are files containing translations as used by the
GNU gettext program.

User contributed PO files for various languages can be found on the download page.

If your language is not present, you might want to start a translation yourself. If this is the case,
please download the Drupal POT translation templates. You can get a PO file editor and start
translating.

You should translate the individual PO files (per module) rather than one big file. The
individual files are automatically packaged into one large file per language in the CVS
repository, which is what others will download from this site.

Once you have completed a reasonable part of the translation, create an issue on the Translation
templates project and upload your PO files. Some helpful developer will then come by and put
them in CVS for you. If you have write access to the contrib CVS you can commit your files
yourself. In any case a project for your translation will be created, you will be made the
maintainer, and your translation becomes available on the download page

Translation templates
Translators should start by downloading the tarball and translating the files to their language of
choice.

The translated files should be stored in contrib-cvs/translations/id where id is the ISO 639
language code. If you don’t know your code, ask in drupal-devel.

You should only put the individual translated files in this directory. A script will generate a
merged id.po file. Make sure to fill out the header section of each file and rename them from .pot
to .po.

If you do not have a CVS account, create an issue for this project and attach your files to it.

Note that the Drupal team will not check contributed translations for accuracy or errors.

176

15 Jan 2006Drupal Handbook

http://www.gnu.org/software/gettext/
http://drupal.org/project?tid=29
http://drupal.org/drupal-pot
http://drupal.org/node/11131
http://drupal.org/node/add/project_issue
http://drupal.org/cvs-account
http://drupal.org/node/321
http://drupal.org/project?tid=29

Programs to use for translation
Recommended PO file editors are (in no particular order):

XEmacs (with po-mode): runs on Unices with X
GNU Emacs (with po-mode): runs on Unices
KBabel: runs on KDE
poEdit: linux and windows
poEdit does support multiple plural forms since version 1.3.

For Mac OS X there is AquaEmacs and a port of GNU Emacs available using carbon for OS X:
http://www.apple.com/downloads/macosx/unix_open_source/carbonemacspackage.html
also see the Emacs wiki for more usage help and tips:
http://www.emacswiki.org/cgi-bin/emacs-en/CarbonEmacsPackage

po-mode is not included, but is easy to add. get it from the GNU gettext distribution.

Be sure to get a recent version for all editors, multiple plural forms are a recent addition to the
gettext standard.

Issues using poEdit
poEdit for windows, version 1.3.1 (latest at the moment) doesn’t seem to recognize plural forms
(if you try to edit a term which has plurals, even if you translate it, it doesn’t appear in poedit
when you move to an other term, as usual, and even if you save, it doesn’t).

Plurals Solution #1
So, if you find a plural term, close poedit, open the file you were translating with a normal text
editor (no, not Word...), and search for "plural" in it, you find something similar to this:

#: modules/comment.module:187 modules/node.module:89
msgid "1 comment"
msgid_plural "%count comments"
msgstr[0] "1 commento"
msgstr[1] "%count commenti"
simply tranlate the text in msgid (singular form) into msgstr[0], and the text in msgid_plural
(plural form) into msgstr[1], save the file, close the editor and return to poedit. Even better, you
can do this BEFORE start translating the rest of the file with poedit, translating every occurrance
of plural in the same way, in every file, and THEN start using poedit: this way, you will find
those strings already translated in poedit, and they don’t bother you.

177

Drupal Handbook15 Jan 2006

http://xemacs.org/
http://emacs.org/
http://i18n.kde.org/tools/kbabel
http://www.poedit.org/
http://aquamacs.org/
http://www.apple.com/downloads/macosx/unix_open_source/carbonemacspackage.html
http://www.emacswiki.org/cgi-bin/emacs-en/CarbonEmacsPackage

Plurals Solution #2
To use plurals in PO edit you can start with the catalog setting for english and then modify to
suit. The syntax is:

nplurals=2; plural=(n != 1);

which gave me what I needed in Swedish translation of:

#: modules/aggregator.module:100;711;722
msgid "1 item"
msgid_plural "items"
msgstr[0] "1 inlÃ¤gg"
msgstr[1] "%count inlÃ¤gg"

I tested this in PO Edit 1.3.1 and got the proper GUI response and saved withut error.

Plurals Solution #3
The plural forms to use in PO edit under catalog-settings where you see

nplural=INTEGER; plural=EXPRESSION

Only one form:
Some languages only require one single form. There is no
distinction between the singular and plural form. An appropriate
header entry would look like this:

Plural-Forms: nplurals=1; plural=0;

Languages with this property include:

Finno-Ugric family
Hungarian

Asian family
Japanese, Korean

Turkic/Altaic family
Turkish

Two forms, singular used for one only
This is the form used in most existing programs since it is what
English is using. A header entry would look like this:

Plural-Forms: nplurals=2; plural=n != 1;

178

15 Jan 2006Drupal Handbook

(Note: this uses the feature of C expressions that boolean
expressions have to value zero or one.)

Languages with this property include:

Germanic family
Danish, Dutch, English, German, Norwegian, Swedish

Finno-Ugric family
Estonian, Finnish

Latin/Greek family
Greek

Semitic family
Hebrew

Romanic family
Italian, Portuguese, Spanish

Artificial
Esperanto

Two forms, singular used for zero and one
Exceptional case in the language family. The header entry would
be:

Plural-Forms: nplurals=2; plural=n>1;

Languages with this property include:

Romanic family
French, Brazilian Portuguese

Three forms, special case for zero
The header entry would be:

Plural-Forms: nplurals=3; plural=n%10==1 && n%100!=11 ? 0 : n != 0 ? 1
: 2;

Languages with this property include:

Baltic family
Latvian

Three forms, special cases for one and two
The header entry would be:

179

Drupal Handbook15 Jan 2006

Plural-Forms: nplurals=3; plural=n==1 ? 0 : n==2 ? 1 : 2;

Languages with this property include:

Celtic
Gaeilge (Irish)

Three forms, special case for numbers ending in 1[2-9]
The header entry would look like this:

Plural-Forms: nplurals=3; \
 plural=n%10==1 && n%100!=11 ? 0 : \
 n%10>=2 && (n%100<10 || n%100>=20) ? 1 : 2;

Languages with this property include:

Baltic family
Lithuanian

Three forms, special cases for numbers ending in 1 and 2, 3, 4, except those ending in 1[1-4]
The header entry would look like this:

Plural-Forms: nplurals=3; \
 plural=n%10==1 && n%100!=11 ? 0 : \
 n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1
: 2;

Languages with this property include:

Slavic family
Croatian, Czech, Russian, Slovak, Ukrainian

Three forms, special case for one and some numbers ending in 2, 3, or 4
The header entry would look like this:

Plural-Forms: nplurals=3; \

plural=n==1 ? 0 : \
 n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1
: 2;

Languages with this property include:

Slavic family
Polish

Four forms, special case for one and all numbers ending in 02, 03, or 04
The header entry would look like this:

180

15 Jan 2006Drupal Handbook

Plural-Forms: nplurals=4; \
plural=n%100==1 ? 0 : n%100==2 ? 1 : n%100==3 || n%100==4 ? 2 : 3;

Languages with this property include:

Slavic family
Slovenian

Long plural formulae: Those should not be broken into several lines in the header of the PO file.
Drupal expects the formula to be on one line. One could consider this a bug.

I don’t think that you can use line breaks in POedit either. The text is fixed to keep from
breaking the site layout. But this:

nplurals=1; plural=ar;

produces an error. The plural form "ar" is not recognized.

Setting up XEmacs with po-mode on Windows
XEmacs has been supported on Windows for a long time and can be downloaded from here:
http://www.xemacs.org/Download/win32. The po-mode is bundled with XEmacs (no need to
get the GNU gettext distribution).

However, you need a MULE-enabled XEmacs binary to edit the UTF-8-encoded PO files and I
could not find such a binary for Windows on www.xemacs.org. What I did is this:

1. Install XEmacs 21.4.13 using the Netinstall
(http://www.xemacs.org/Download/win32/setup.exe)

2. Replace the files installed in the C:\Program Files\XEmacs\XEmacs-21.4.13 directory with
those from
http://www.suiyokai.org/tomonori/xemacs/xemacs-i586-pc-win32-21.4.13-mule.tar.gz (as
the filename implies, this is a MULE-enabled XEmacs 21.4.13 binary for Windows)

3. Install the MULE packages in the C:\Program Files\XEmacs\mule-packages directory
(these can be downloaded from
ftp://ftp.xemacs.org/xemacs/packages/xemacs-all-mule-packages.tar.gz).

4. Set the environment variable EMACSPACKAGEPATH with this value:
C:\Program Files\XEmacs\site-packages;C:\Program
Files\XEmacs\mule-packages;C:\Program Files\XEmacs\xemacs-packages

5. To ensure automatic Unicode detection when opening files, add these lines to your init file
(init.el):
(require ’un-define)
(set-coding-priority-list ’(utf-8))
(set-coding-category-system ’utf-8 ’utf-8)

6. And finally, add this to automatically enable the po-mode:
(require ’po-mode)

181

Drupal Handbook15 Jan 2006

http://www.xemacs.org/Download/win32
http://www.xemacs.org/
http://www.xemacs.org/Download/win32/setup.exe
http://www.suiyokai.org/tomonori/xemacs/xemacs-i586-pc-win32-21.4.13-mule.tar.gz
ftp://ftp.xemacs.org/xemacs/packages/xemacs-all-mule-packages.tar.gz

Yes, this is a bit complicated... Welcome to the wonderful world of XEmacs! :-) If you never used
XEmacs before, prepare yourself for a steep learning curve.

BTW, your installation directory does not have to be C:\Program Files\XEmacs. I used this for
simplicity in the above instructions.

Translated Drupal information
Some documentation about Drupal (outside of the Drupal interface itself) has also been
translated into other languages. Links to such 3rd party translations of external Drupal
documentation should live here.

African
This page is for the translation of Drupal Core into Afrikaans. The rest of this text will be in
Afrikaans, as that is the purpose of this document.

Vir diegene wat betrokke wil raak by die vertaling:
Stuur ’n e-pos aan Kobus en spesifiseer waarmee jy betrokke sou wou raak. Kobus sal dan met
jou in verbinding tree indien jy die nodige besonderhede verskaf het.

Om ’n fout met die vertaling te rapporteer:
Besoek asb. die foutrapporteringsblad

Vir enige ander verwante redes waaroor jy wil kontak:
Stuur ’n e-pos aan Kobus en spesifiseer die presiese rede vir u skakeling.

Russian
Translations and original documentation for Russian Drupal users (still very incomplete, but
work is in progress):

Read about Drupal features in Russian
Drupal Administrator’s Guide - a translation of the original English version
Drupal Handbook - a translation of the original English version with some rewrites and
additions

Visit drupal.ru/docs for a complete list of links to Russian documentation.

Join our efforts to translate Drupal docs into Russian!

182

15 Jan 2006Drupal Handbook

http://drupal.org/project/issues/24628
http://drupal.ru/features
http://translate.drupal.ru/PerevodDrupalAdministratorsGuide?v=17ni
http://drupal.ru/handbook
http://drupal.ru/handbook
http://drupal.ru/docs
http://drupal.ru/forum/russian

Spanish
Drupal: Manejador de Contenidos y Comunidad Virtual
Drupal: CaracterÃ-sticas
Drupal: Manuales

Translation guidelines
To achieve translations that are consistent throughout a whole Drupal site, certain guidelines
need to be agreed upon by the translator community for a particular language.

Such guidelines should include a wordlist for words that occur in Drupal’s strings. The Ankur
Bangla Developer’s Guide provides a good example of how this is done on a project unrelated to
Drupal. It will be helpfull to not set up a new word lists, but re-use existing ones from an
existing translation project.

Other areas which need guidelines will differ from language to language. Please add those
guidelines as child pages to this book page.

Translation of contributed modules
Translatable strings from contributed modules are not included in the Drupal core POT files.
Module authors can use the extractor.php script which comes with the core PO files to generate a
POT file on their own. Instructions for running the script can be found in the README that
comes with the core POT files. The generated POT file should be named as the module, but with
a .pot extension, e.g. event.module gets an event.pot file. This file should be placed in a
suddirectory po. Translations should be added to the same directory. E.g. the po subdirectory of
event.module currently contains the following files: de.po, es.po, event.pot, he.po, hu.po.

Translators should take care to populate their started translation with the strings from the
general.po file for their language using msgmerge. In this way they can avoid using different
translations for terms that occur in both files.

Distributing the translation effort
To facilitate easier handling of a community translation effort, the Drupal POT file is split up
into small files that do not contain doubly occurring strings.

All strings that occur more than once in the Drupal core distribution are put into the general.pot
file. This ensures that those strings are translated to the same string. Also, files that have ten or
less translatable strings will not get their own POT file, but those strings will be appended to the
general.pot file.

183

Drupal Handbook15 Jan 2006

http://www.edestino.org/drupal
http://freelance.reyero.net/drupal/features
http://drupal.org.es/manuales
http://www.bengalinux.org/devel_guide/ch03s04.html
http://www.bengalinux.org/devel_guide/ch03s04.html

Of course, some coordination among the project members is still needed to ensure the quality of
the translation.

If a language has several options on how to translate some strings, then it is possible to create
PO files that only change those strings. An example would be German where your can translate
you either as Du or Sie depending on the audience of your site.

Status of the translations
The table below presents an overview of the status of each translation project. This page is
updated daily by the package script: it was last updated 1 hour 22 min ago.

Status overview
Language cvs 4.6.0 4.5.0

af 100% (complete) 100% (complete)

ar 77% (236 missing) 77% (236 missing)

bg 88% (197 missing)

bn 3% (1764 missing)

ca 64% (409 missing) 96% (58 missing) 92% (130 missing)

cs 89% (190 missing) 89% (190 missing) 63% (564 missing)

da 100% (complete) 100% (complete) 100% (complete)

de 76% (380 missing) 76% (380 missing) 99% (5 missing)

eo 49% (116 missing)

es 100% (complete) 100% (complete) 100% (complete)

es-la 0% (256 missing)

eu 67% (496 missing) 14% (1163 missing)

fi 98% (4 missing)

fr 95% (90 missing) 100% (complete) 93% (97 missing)

gu 0% (1825 missing)

hu 100% (complete) 100% (complete) 100% (complete)

id 96% (56 missing) 96% (55 missing)

it 94% (91 missing) 94% (91 missing) 100% (complete)

184

15 Jan 2006Drupal Handbook

http://drupal.org/project/af
http://drupal.org/project/ar
http://drupal.org/project/bg
http://drupal.org/project/bn
http://drupal.org/project/ca
http://drupal.org/project/cs
http://drupal.org/project/da
http://drupal.org/project/de
http://drupal.org/project/eo
http://drupal.org/project/es
http://drupal.org/project/es-la
http://drupal.org/project/eu
http://drupal.org/project/fi
http://drupal.org/project/fr
http://drupal.org/project/gu
http://drupal.org/project/hu
http://drupal.org/project/id
http://drupal.org/project/it

ja 100% (complete) 100% (complete) 100% (complete)

lt 67% (543 missing)

mk 25% (1148 missing)

nb 22% (943 missing)

nl 76% (380 missing) 80% (320 missing) 84% (228 missing)

nno 26% (1015 missing) 28% (979 missing)

pl 17% (1384 missing) 60% (723 missing) 6% (1306 missing)

pt-br 100% (complete) 100% (complete) 23% (862 missing)

pt-pt 100% (complete) 100% (complete) 100% (complete)

ro 98% (19 missing) 98% (19 missing)

ru 71% (358 missing) 64% (597 missing) 88% (155 missing)

sk 9% (1436 missing) 9% (1417 missing)

sq 39% (687 missing) 39% (687 missing)

sv translation broken translation broken

tl-ph translation broken

uk 100% (complete)

zh-hans translation broken translation broken 62% (514 missing)

zh-hant 99% (1 missing) 99% (3 missing) translation broken

Checking your translation status
To see how many of the strings in the PO files you already translated you can try this:

for i in *.po; do echo -n "$i: " ; msgfmt --statistics $i ; done

Some PO editors already include this feature.

Make a single file from the loose .po files from CVS
If you want to make a single po file from a CVS folder containing all the small po files, the
following commands will do (*nix only). You should execute this, while being in the folder with
the .po files.

185

Drupal Handbook15 Jan 2006

http://drupal.org/project/ja
http://drupal.org/project/lt
http://drupal.org/project/mk
http://drupal.org/project/nb
http://drupal.org/project/nl
http://drupal.org/project/nno
http://drupal.org/project/pl
http://drupal.org/project/pt-br
http://drupal.org/project/pt-pt
http://drupal.org/project/ro
http://drupal.org/project/ru
http://drupal.org/project/sk
http://drupal.org/project/sq
http://drupal.org/project/sv
http://drupal.org/project/tl-ph
http://drupal.org/project/uk
http://drupal.org/project/zh-hans
http://drupal.org/project/zh-hant

$ msgcat --use-first general.po [^g]*.po | msgattrib --no-fuzzy -o
nl.po

Off course you should change nl into your own language code.

Recycling old translations
Drupal users with existing translations might want to add those to the translations download
page. To do this they first need to export their translation from the localization manage languages
screen (export subtab). Let us assume you have an Italian translation. The above mentioned
process will create an it.po file for you. To use this file as a basis for a new translation, you treat
it as a PO compendium, i.e. a library of pre-translated strings.

This guide assumes a Unix/Linux environment. If you use Windows, check if your PO editor
doesn’t have a function for this.

We will split the single, large PO file into the smaller files that the Drupal translation Project
requires.

First, put the small PO files into a subdirectory drupal-pot and your it.po file into another one.
Then create an empty directory where you want to keep your new small PO files.

Then go to the empty directory and execute the following command from the command line:

for i in /path/to/drupal-pot/*.pot ; do msgmerge --compendium
/path/to/it.po -o ‘basename $i .pot‘.po /dev/null $i ; done

After a while (yes this will take a few minutes) you should have a directory of small PO files that
have the matching strings inserted.

Troubleshooting
When doing translations or importing them, several problems can occur. If you think you found
a bug in either a translation or in Drupal’s locale module, please file bug reports against the
project in question.

If you have a more general question you can ask it in the translations forum.

Here we collect some of the more common issues found.

Weird characters or question marks
Symptom: After importing a translation you find all kind of weird characters or question marks
on your site.

186

15 Jan 2006Drupal Handbook

http://drupal.org/drupal-pot
http://drupal.org/forum/30

Solution 1: The translator did not use UTF-8. Drupal is fully UTF-8 aware and expects
translations to be supplied in that character set as well. You can change the charset of a PO file
using GNU msgconv. Please file a bug against the translation in question.

Solution 2: You do not have the correct font installed to display the language in question.

187

Drupal Handbook15 Jan 2006

Drupal test suite
Drupal is currently lacking some test suite to be run by developers before submitting important
patches. The following setup isn’t really a test suite but it is a start to avoid the most
embarrassing errors. A more complete solution would be unit tests as proposed by Moshe
Weitzman. but they’d also be a lot more work.

Ok, here is what I will do in the future:

1. Enable the menu module and disable the ’log out’ link.
2. Run

 wget --mirror --delete-after http://killes.drupaldevs.org/
where killes.drupaldevs.org is my development site. You can add --wait=5 to the options if
you don’t want a free stress test.

3. If I want to test as an authenticated user I do
wget --mirror --delete-after --load-cookies=/path/to/cookies.txt
http://killes.drupaldevs.org/
where /path/to/cookies.txt is the cookie inside my .mozilla directory.

Note that this can take some time. wget will access every Drupal page linked from the frontpage.
You can later have a look at the error logs and find out if any errors where caused.

188

15 Jan 2006Drupal Handbook

http://killes.drupaldevs.org/
http://killes.drupaldevs.org/

FAQ
This FAQ (Frequently Asked Questions) collects questions of interest to Drupal Contributors.

PHP Debugger
What do you folks use for debugging PHP? I’m getting $conf and header errors on my Drupal
installation and would like to track them down, learning Drupal in the process. Is there a
debugger for PHP where I can set breakpoints, see values change, etc.? Thanks for your help.

189

Drupal Handbook15 Jan 2006

	Developing for Drupal
	Contributing to Drupal
	Types of Contributions
	Task list
	Bug reports
	How to report bugs effectively

	Feature suggestions
	Patches
	Diff and patch
	Diff on Windows
	Patch on Windows

	Creating and submitting patches
	Rules of reviewing patches

	The revision process
	Criteria for evaluating proposed changes
	Maintaining a project on drupal.org
	Downloads and packaging
	Managing releases
	Orphaned projects

	Tips for contributing to the core

	Mailing lists
	Newsletter
	Drupal-support
	Drupal-devel
	Drupal-docs
	Drupal-cvs
	Infrastructure
	Mailing of project issues

	Coding standards
	Drupal Coding Standards
	Indenting
	Control Structures
	Function Calls
	Function Declarations
	Comments
	Including Code
	PHP Code Tags
	Header Comment Blocks
	Using CVS
	Example URLs
	Naming Conventions
	Functions and Methods
	Constants
	Global Variables
	Filenames
	Doxygen formatting conventions
	Comments
	Indenting
	PHP Code tags
	SQL naming conventions
	Functions
	Constants
	Control structures
	Header comment blocks

	CVS
	CVS concepts
	Using CVS with branches and tags
	Windows
	Available Branches

	Apply for contributions CVS access
	CVS GUIs and clients
	Cross-platform CVS clients
	Eclipse CVS plug-in

	CVS front ends for Windows
	TortoiseCVS
	WinCVS

	CVS on Mac OS X
	CVL: point and click CVS
	Setting up/step by step CVS
	Basic CVS with CVL
	Preparing a project
	Committing a project

	Drupal CVS repositories
	Main repository
	Contributions repository
	Promoting a project to be an official release
	Adding a file to the CVS repository
	Tracking Drupal source with CVS
	Example
	Updating the vendor branch
	Summary
	Additional resources

	Sandbox maintenance rules

	Additional references

	Drupal's APIs
	Module developer's guide
	Introduction to Drupal modules
	Drupal's menu building mechanism
	Drupal's node building mechanism
	How Drupal handles access

	Drupal's page serving mechanism
	Creating modules - a tutorial
	Getting started
	Letting Drupal know about the new function
	Telling Drupal about your module
	Telling Drupal who can use your module
	Announce we have block content
	Generate content for a block
	Installing, enabling and testing the module
	Create a module configuration (settings) page
	Adding menu links and creating page content
	Adding a 'more' link and showing all entries
	Conclusion

	Updating your modules
	Converting 3.0 modules to 4.0
	Converting 4.0 modules to 4.1
	Required changes
	Optional changes

	Converting 4.1 modules to 4.2
	Converting 4.2 modules to 4.3
	Creating modules for version 4.3.1
	Getting Started
	Telling Drupal about your module
	Telling Drupal who can use your module
	Announce we have block content
	Generate content for a block
	Installing, enabling and testing the module
	Create a module configuration (settings) page
	Adding menu links and creating page content
	Letting Drupal know about the new function
	Adding a more link and showing all entries
	Conclusion

	How to build up a _help hook
	How to convert a _system hook
	How to convert an _auth_help hook

	Converting 4.3 modules to 4.4
	Menu system
	Theme system
	Node system
	Filter system
	Hook changes
	Emitting links
	Status and error messages

	Converting 4.4 modules to 4.5
	Menu system
	Path changes
	Node changes
	Filtering changes
	Check_output() changes
	Filter hook
	Filter tips
	Other changes

	Converting 4.5 modules to 4.6
	Block system
	Search system
	Module paths
	Database backend
	Theme system
	Watchdog messages
	Node markers
	Control over destination page after form processing
	Confirmation messages
	Inter module calls
	Node queries
	Text output

	Converting 4.6 modules to HEAD
	Taxonomy API change
	Table API change
	Check Output change

	Join forces
	Reference
	'Status' field values for nodes and comments
	Values of 'comment' field in node table

	Module how-to's
	How to write a node module
	How to write database independent code
	How to write efficient database JOINs
	How to connect to multiple databases within Drupal
	How to write themable modules

	Theme developer's guide
	Theming overview
	Creating custom themes

	PHPTemplate theme engine
	Installing PHPTemplate
	Creating a new PHPTemplate
	Block.tpl.php
	Available variables
	Default template

	Box.tpl.php
	Available variables
	Default template

	Comment.tpl.php
	Available variables
	Default template

	Node.tpl.php
	Available variables
	Default template
	Theme distinct node types differently

	Page.tpl.php
	Available variables
	Default template

	Alternative templates for different node types
	Example - Theming flexinode
	The Quick Version
	Create template.php
	Create flexinode_timestamp.tpl.php
	The Long Version
	1. find the theme function for the flexinode field
	2. Create template.php and add override function
	3. Create flexinode_timestamp.tpl.php to do formatting
	Example Files
	template.php
	flexinode_timestamp.tpl.php

	Making additional variables available to your templates
	Overriding other theme functions
	Example - Overriding the user profile pages using PHPTemplate
	Before
	After

	Not including drupal.css
	Protecting content from anonymous users when using overrides
	Using PHPTemplate Overrides with protected content
	Example
	Solution

	Themeing front page and others
	XTemplate to PHPTemplate conversion

	XTemplate theme engine
	Creating a new XTemplate
	Template basics
	Section Tags
	Item Tags

	Header section
	The Section
	Prolog
	DOCTYPE
	{head_title}
	{head}
	{styles}
	{onload_attributes}
	{logo}
	{site_name}
	{site_slogan}
	{secondary_links} {primary_links}
	Search Box
	{search_url}
	{search_description}
	{search_button_text}
	Mission
	{mission}
	Title
	{title}
	Tabs
	{tabs}
	{breadcrumb}
	Help
	{help}
	Message
	{message}

	Node section
	The Node Section
	{sticky}
	Picture
	{picture}
	Title
	{link}
	{title}
	{submitted}
	Taxonomy
	{taxonomy}
	{content}
	Links
	{links}

	Comment
	The Comment Section
	Avatar
	{avatar}
	Title
	{link}
	{title}
	Submitted
	{submitted}
	New
	{new}
	Content
	{content}
	Links
	{links}

	Blocks
	The Section
	{blocks}
	Block
	{module}
	{delta}
	{title}
	{content}

	Footer
	The Footer Section
	Message
	{footer_message}
	{footer}

	Editing with Golive
	Set Up
	Editing

	Plain PHP themes
	Theme coding conventions
	Updating your themes
	Converting 3.0 themes to 4.0
	Required changes
	Changes in class definition
	Changes in function header()
	Changes in function node()
	Changes in function comment()
	Changes in function footer()
	Optional changes
	New function: system()

	Converting 4.0 themes to 4.1
	Required changes
	Optional changes
	theme_head

	Converting 4.1 themes to 4.2
	Required changes
	Add a theme_onload_attribute() to a <body> tag:
	Optional changes
	Take advantage of settings() hook
	Direct you site logo to index.php

	Converting 4.2 themes to 4.3
	Converting 4.3 themes to 4.4
	Converting 4.4 themes to 4.5
	Directory structure
	Tabs (a.k.a. Local Tasks)
	Status Messages
	Static vs. Sticky
	Avatar vs. User Picture
	Theme Screenshots
	Centralized Theme Configuration
	Styles
	_help hook

	Converting 4.5 themes to 4.6
	Search form
	Node links
	Pages
	Node and comment markers
	Pager and menu item themeing
	Text validation changes

	Converting 4.6 themes to HEAD
	Table row coloring

	Theme screenshot guidelines
	Theme how-to's
	Tips for designing themes in Dreamweaver, GoLive etc.
	Dreamweaver
	In Extensions.txt
	In MMDocumentTypes.xml

	Adding your theme to Drupal.org
	Theme snippets repository
	Custom login
	Customize display of submission information based on node type
	get an contextual array for your node-links
	How to display mission on every page?
	Make images square
	Overriding drupal.css; two approaches

	Drupal.org site maintainers
	Site maintainer's guide
	Unpublishing vs deleting of content
	Blocking vs deleting of users
	Suggested Workflow
	Badly formatted posts

	Translator's guide
	Translation templates
	Programs to use for translation
	Issues using poEdit
	Plurals Solution #1
	Plurals Solution #2
	Plurals Solution #3

	Setting up XEmacs with po-mode on Windows

	Translated Drupal information
	African
	Vir diegene wat betrokke wil raak by die vertaling:
	Om 'n fout met die vertaling te rapporteer:
	Vir enige ander verwante redes waaroor jy wil kontak:

	Russian
	Spanish

	Translation guidelines
	Translation of contributed modules
	Distributing the translation effort
	Status of the translations
	Status overview
	Checking your translation status

	Make a single file from the loose .po files from CVS
	Recycling old translations
	Troubleshooting
	Weird characters or question marks

	Drupal test suite
	FAQ
	PHP Debugger

